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Path-aware search for single or multiple optima with a mobile robot

Author: Tudor-Voicu Sântejudean

Scientific supervisor: prof.dr.ing. Lucian Bușoniu

1. Requirements: Develop mobile robot algorithms that optimize the traveled dis-
tance when searching for optima points of an unknown function and possibly gather
data buffers over a wireless network, where the maxima represent wireless anten-
nas.

2. Solutions: A Gradient Ascent solution that maps the local optima of the function
(informally referred to as ”antennas”) and gathers data buffers from these points
is first developed. The method uses Local Linear Regression to build a local ap-
proximation plane and follows the direction of the plane’s gradient (pointing to
the greatest function increase) with maximum velocity. Since it uses derivatives,
the method is particularly sensitive to noisy objective functions. Next, we extend
the deterministic optimistic optimization (DOO), that naturally targets the global
optima, and create the Path-Aware Optimistic Optimization algorithm (OOPA).
OOPA makes use of a Lipschitz continuity assumption and the samples taken across
the trajectory seen so far to build the function upper bound. This upper bound,
refined with each new acquired sample, optimistically points to the maxima of
the function. We formulate each decision of direction taking as an optimal control
problem (OCP) and solve it using Dynamic Programming. The OCP objective is to
maximize the cumulative rewards seen as weighted upper bound refinements across
the considered trajectory and implicitly minimize the path travelled by the robot
till optima. Note that OOPA does not include any data transmission objectives.

3. Obtained results: The Gradient Ascent was tested against two baselines derived
from the Travelling Salesman Problem (TSP) and Lawnmower method. In the
deterministic case, when no noise is present on the communication channel, the
Gradient Ascent provides encouraging results in terms of the distance travelled
to fulfill the objectives, its performance being closer to the TSP compared to the
Lawnmower. However, in the presence of noise, these results deteriorate as the
Gradient Ascent can converge suboptimally or even break, especially when the
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signal strength is drowned by noise. OOPA converges to the optima given a large
enough number of function evaluations. It maximizes the long-term refinements of
function upper bound and implicitly minimizes the travelled distance until optima
is reached. The path-awareness property comes from the usage of all the previous
trajectory samples when solving the OCP to take the next movement decision,
unlike the Classical DOO (CDOO) approach that always commits to sampling
the largest upper bound points. CDOO and Gradient Ascent have been used as
baselines for the OOPA algorithm. As results show, OOPA found the optima in
less distance compared to its baselines.

4. Tests and verification: The Gradient Ascent was tested on antennas generated
uniformly random across the searching space from a fixed starting position, both in
the case of deterministic and stochastic wireless transmission channels. OOPA was
tested on fixed optima points in a deterministic setting, but with different starting
positions and different types of functions (radial basis and pyramidal functions).
Tests show that the developed methods perform better when compared to their
baselines.

5. Personal contribution: The second chapter, presenting methods for multiple an-
tenna search, is an adapted formulation of well-known algorithms available in the
literature (gradient-based, TSP, lawnmower methods). The third chapter intro-
duces a novel optimal control algorithm, Path-Aware Optimistic Optimization,
that represents a main contribution of this work.

6. Bibliographical sources: Most cited resources are conference papers, lecture notes
or books. Additionally, several sites and online articles presenting practical use
cases relevant to our problem statement are being referenced throughout the work.
All sources are attached in the last section called Bibliography.

Author signature

Scientific supervisor signature
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1 Introduction

1 Introduction
1.1 Context and motivation
Whether they are mobile or fixed, robots have become increasingly popular across various
industries. They are employed in applications such as manufacturing [1], precision agri-
culture [2], education [3], surveilling and mapping of remote areas [4], etc. In this work
we study the latter category, in which a mobile robot needs to plan its trajectory path to
fulfill a series of navigation and transmission objectives. We define the following scenar-
ios: 𝑎) Multiple Antenna Search, in which antennas spread throughout an arbitrary field
need to be found and their data buffers gathered wirelessly by the robot in the shortest
time; 𝑏) Path-Aware Global Optimization, in which the objective is to find only the true
optimum of the sampled function as soon as possible, without including any transmission
tasks. Due to energy and time constraints we design optimization techniques to solve
the navigation and transmission tasks as soon as possible, while sampling an unknown
function defined over a physical domain. Function optima can be seen as the maximum
transmission point where an antenna might be situated [5], or optima points of other
physical measurement such as forest density [6], pollutant concentration [7], etc.

Numerical optimization methods are a main topic of research due to the large number
of problems they can address [8]. A popular class of such algorithms are the derivative
based methods (Newton, Conjugate Gradient, Quasi-Newton, etc.) that use the function’s
gradient (and sometimes Hessian) to iteratively update on their initial estimate until
reaching a local optima [9]. Other types of optimization methods are specifically designed
to find the global optima of the objective function. e.g. optimistic optimization is a
branch-and-bound technique that creates a search tree by sampling always the leaf with
the highest upper bound value, associated with a subset that optimistically contains
the function optima [10]. Multi-armed bandits are a set of sample-based optimization
algorithms designed for the stochastic case, that can use a so-called upper-confidence-
bound to minimize the long-term cumulative regret [11], [12]. Optimizing the collection of
a quantity (represented by reward) across the trajectory performed by an agent represents
an optimal control problem that can be solved through Reinforcement Learning [13]. Note
that the performance of such learning-based algorithms is being constantly improved in
terms of time complexity and tighter regret bounds, for instance [14], [15]. With such a
diverse field, there is a good chance of finding a method that addresses the engineering
problem at hand.

In this work we resort to a series of well-known optimization and optimal control ap-
proaches and combine them (where necessary) to solve the problems defined above. For
𝑎), a Gradient Ascent method has been developed and tested while 𝑏) was solved through
an algorithm combining Dynamic Programming (DP) and Deterministic Optimistic Op-
timization (DOO). All these algorithms are described in-depth in the following sections
and evaluated in extensive simulations to show that they solve the tasks mentioned above.

2



1 Introduction

1.2 Problem statement
Given a mobile robot, it is required to find in the shortest time the optima of a function
defined over the field on which the robot moves, while possibly transmitting/receiving
data over a wireless network. This formulation is different from classical optimization
problems in the sense that, due to dynamics constraints (limited velocity), the robot
can only sample neighboring states to its current position. Thus, it is not possible to
evaluate the function at arbitrary points of the space immediately one after the other, as
that would require an arbitrarily large robot velocity. Moreover, sampling far-away states
even at finite/small velocity without revisiting the trajectory and using the samples taken
by the robot while reaching these new waypoints, would overcommit, as new information
would become available and the old trajectory might become suboptimal. This makes
the path of the robot important, especially in practical scenarios where energy and time
requirements are present.

We identify some possible use cases of our problem: unmanned aerial vehicles (UAVs)
searching for the largest bandwidth of surrounding antennas to transfer data faster, map-
ping of the ocean litter density to e.g. employ cleaning underwater robots, finding areas
with high air pollutants in a city to restrict the traffic, etc.

Our work tackles two slightly different problems. In the first one, the robot aims to find
all local maxima of the objective function. This can be seen as a search for multiple
antennas (e.g. beacons), where the received signal strength indicator is the function to be
optimized. In this case, it is interesting to add the objective of gathering the data buffers
stored by these antennas using a wireless communication protocol. We call this scenario
Multiple Antenna Search. Note that this scenario could also represent searching all litter
hotspots or other similar use cases.

The second scenario is called Path-Aware Global Optimization, in which the robot targets
only a global optimum. This can be seen as the maximum transmission point of an
antenna, the maximal litter concentration in an area, highest traffic congestion area etc.

Even though the first scenario can cover the second one (indeed, by searching for all the
local optima, the global one can be chosen as the maxima/minima of all these points), the
second method finds the global maxima sooner as it does not enumerate all the local ones.
Another difference lies in the implementation and robustness of the methods. As stated
above, Gradient Ascent is used to solve the first scenario making use of derivatives to reach
the points of interest. Intuitively, stochastic objective functions (e.g. noisy communication
channels, scanned images, etc.) can lead to poor performance of gradient-based methods
since such gradients are greatly affected by noise. Thus, a more robust algorithm that does
not use derivatives is employed in the second scenario. It combines dynamic programming
and deterministic optimistic optimization to quickly find the global optima. We call
this algorithm Path-Aware Optimistic Optimization (OOPA). Note that OOPA does not
include any transmission objectives yet and is mainly studied in a deterministic setting.

3



1 Introduction

1.3 Contribution
The methods described in the second chapter represent reformulations and combinations
of well-known algorithms (gradient-based, travelling salesman problem, lawnmower tra-
jectory) adapted to our problem statement. The third chapter introduces a novel optimal
control algorithm, Path-Aware Optimistic Optimization, that represents a main contri-
bution of this work.

1.4 Thesis Structure
Next, Chapter 2 presents the Multiple Antenna Search. Chapter 3 introduces the Path-
Aware Optimistic Optimization method, and Chapter 4 concludes the current work.
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2 Multiple Antenna Search

2 Multiple Antenna Search
2.1 Introduction and motivation
Given a mobile robot and a set of antennas spread throughout a field of known size, it
is required to find their locations and download all antenna data buffers into the robot
internal memory, in the least number of steps (or equivalently for constant velocity, in the
shortest time) possible. Antennas (also referred as “transmitters” throughout the work)
have unknown location, each storing different data buffers. The mobile robot must scan
the field to find antennas and download data buffers while navigating. The transmission
channel is wireless, with transmission rates being possibly affected by noise. As it is
typical for radio protocols (e.g. Wi-Fi), the robot can transfer data from one antenna at
a time while still being able to scan for surrounding antenna signals.

Similar learning problems in which the transmission and navigation objectives are imposed
for unknown transmission rates have been previously studied in the literature. One exam-
ple is the optimal control method of [16] that uses the Pontryagin maximum principle to
optimize the time required by an agent to reach a waypoint while transferring data over a
wireless network. Reference [17] tackles two different control problems: the transmission
problem (PT), in which communication rates are arbitrarily shaped but deterministic;
and transmission-and-navigation problem (PN), allowing stochastic rates that radially
decrease around the antenna. Note that PN has as additional objective - navigation to
an end position while emptying the data buffer - compared to PT. PT uses dynamic
programming and supervised learning to solve the control problem and empty the buffer
in the shortest time, given a set of surrounding antennas; while PN uses active learning
to approximate the parameters of the rate function model and the optimal control of
[16] to find the shortest path transmitting the data and reaching the required waypoint,
given a single surrounding antenna. The learning procedure is done online based on the
samples acquired across a single trajectory run (similar to the problems proposed in this
work). Similar to our problem, the agent needs to transmit (equivalent to gathering) a
data buffer over a wireless network in a field of unknown positioned antennas. Different
to our approach, PT does not aim to find all the surrounding antennas, but only relay
the data buffer of the robot once, in the minimum time possible. Different to PN, we aim
to develop an algorithm that finds the optima without using a model of the transmission
rate function (whose parameters are in turn learned through samples).

Algorithms employed in this chapter search for the antenna centers while transferring
data into the robot’s buffer at the same time. A series of algorithms such as: Gradient-
Ascent, Travelling Salesman Problem (TSP) and Lawnmower method, have been adapted
and integrated to suit our problem requirements. In short, Gradient-Ascent follows the
antenna with the highest signal strength in the direction of the greatest rate function in-
crease (given by its gradient) to transfer and find antenna locations. Travelling Salesman
Problem has knowledge of the antenna positions, based on which it computes an optimal
length tour to traverse and gather the data buffers. The Lawnmower method follows
a lawnmower trajectory to approximate antenna positions using model-based equations
while transferring the data. Extensive tests showcasing the parameter tuning and corre-
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2 Multiple Antenna Search

sponding results, both for the deterministic and stochastic rate functions, are presented
later in this chapter.

An application of the multiple antenna problem is a field of wireless soil beacons mon-
itoring the growing of the sweet corn. To maximize the crop harvesting, soil quality
parameters (temperature, moisture, nutrients, etc.) are critical to be known, especially
in the early germination stages. Beacons can gather such data and send it to surveilling
UAVs acting as gateways [18], [19]. UAVs can collect the soil parameters provided by the
beacons, whose positions are approximated based on the RSSI (Received Signal Strength
Indicator). Note that the position of the beacons is unknown and underground, possibly
planted with the planter along with the corn seeds. Knowing where the transmitters are
located helps during maintenance cycles, as many wireless devices run on off-the-shelf
batteries that need to be replaced after several months or years. This solution could help
farmers to safely grow their corn crops by providing real-time, on-demand soil quality
data and can bring cost reductions due to a better use of the irrigation systems or by
facilitating the maintenance procedures (battery replacement, OTA firmware updates,
etc.).

Figure 2.1. Possible use case of the multiple antenna problem: BLE (Bluetooth Low Energy) beacons
monitor the sweet corn germination process by acquiring soil quality parameters (temperature, moisture).
Measurement data gathered over a period of time is transferred to a surveilling UAV acting as a gate-
way. The UAV approximates the beacon positions based on the RSSI to help their localization during
maintenance cycles (battery replacement, over-the-air firmware updates) and, essentially, for further
information-gathering rounds.

2.2 Problem statement
We consider a 2D grid on which the agent is moving, thus let 𝑝 ∈ 𝑃 ⊆ ℝ2 be the position.
Robot movement on the grid is determined by the discretized actions 𝑢𝑘 ∈ 𝑈 ⊆ ℝ2, taken
at each given time step 𝑘. Simplified motion dynamics:

𝑔 ∶ 𝑃 × 𝑈 → 𝑃, 𝑝𝑘+1 = 𝑔(𝑝𝑘, 𝑢𝑘) (2.1)

6



2 Multiple Antenna Search

can be defined using the nonlinear, unicycle updates:

𝑝𝑘+1 = 𝑝𝑘 + 𝑇𝑠 ⋅ 𝑢𝑘,1 ⋅ [cos(𝑢𝑘,2), sin(𝑢𝑘,2)]𝑇 (2.2)

where 𝑇𝑠 is the sampling period and 𝑢𝑘,1 and 𝑢𝑘,2 respectively represent the velocity and
robot heading, 𝑢𝑘 = [𝑢𝑘,1, 𝑢𝑘,2]𝑇 . One can observe that such dynamics are of first order
(there are no other motion related states, e.g. additional velocities).

The agent stores in its internal memory the data transferred from the field antennas, each
such internal buffer evolving as follows:

𝑏𝑖,𝑘+1 = min{𝑏𝑚𝑎𝑥, 𝑏𝑖,𝑘 + 𝑇𝑠 ⋅ 𝑟𝑖,𝑘} ∈ ℝ (2.3)

where 𝑏𝑖,𝑘+1 is the buffer corresponding to the 𝑖𝑡ℎ antenna (denoted by 𝑎𝑖, with 𝑖 repre-
senting the specific antenna index) at the next step 𝑘 + 1; 𝑏𝑚𝑎𝑥 is the preset max buffer
size to be transferred and 𝑟𝑖,𝑘 is the rate transfer function sampled from 𝑎𝑖, considered to
be constant during the sampling period 𝑇𝑠.

Transfer rates vary based on the robot position and on the random fluctuations. Rates
sampled from the surrounding antennas, 𝑟𝑖,𝑘 ∼ ℛ𝑖 where ℛ is a density function depend-
ing on robot position, 𝑟𝑖,𝑘 ∈ ℝ∗

+, can be seen as continuous, average values taken constant
along a sampling period 𝑇𝑠. This leads to a discrete-time evolution of all buffers in the
proposed algorithms.

A general model-based formula for transmission rates has already been defined in the
literature [17]:

𝑟𝑖,𝑘 = 𝑅𝑖log2 [1 + 𝑧𝑘 ⋅ 𝑆𝑖 (𝑝𝑘)] (2.4)

where 𝑆𝑖 (𝑝𝑘) represents the Signal-to-Noise Ratio sampled at position 𝑝𝑘 and 𝑅𝑖 is a
constant specific to the antenna 𝑎𝑖 (which can be computed empirically if no previous
value is available). An SNR model is also available in [17]:

𝑆𝑖 (𝑝𝑘) = 𝐾𝑖
(||𝑝𝑘 − 𝑝𝑖|| + ℎ𝑖)

𝛾 (2.5)

where 𝐾𝑖 is an antenna-specific constant (transmission power, normalization weight etc.
of the antenna 𝑎𝑖), 𝑝𝑖 is the antenna position, ℎ𝑖 describes the SNR shape and 𝛾 represents
the path loss exponent.

Note: The SNR values decrease as robot moves further away from the transmitter. The
decrease speed is influenced by the parameters ℎ𝑖 and 𝛾. The greater the parameters, the
steeper the decrease of the SNR and of the rate function.

Note: The parameters presented in formulas (2.4) and (2.5) (𝐾𝑖, 𝛾, ℎ𝑖, 𝑅𝑖, 𝑆𝑖(𝑝𝑘), 𝑝𝑖, 𝑟𝑖,𝑘)
are, in general, antenna-dependent and can differ from one transmitter to the other. In
this work, similar types of antennas are considered having a slight variation in parameters
(to simulate real-life scenarios).

Note: 𝑧𝑘 is a number drawn from a Rice density and acts as a weighting factor for the

7



2 Multiple Antenna Search

SNR in the rate function formula. Its purpose here is to simulate the noise present on the
transmission channel. The general formula of a Rice sample is given in (2.6).

𝑧𝑘 = 1
𝐸𝑧

∣[ 𝑧1 + 𝑣
𝑧2

]∣ (2.6)

where 𝑧1, 𝑧2 are independent, normally distributed, random numbers, drawn from a zero-
mean distribution with variance equal to 1; and || ∗ || represents the Euclidean Norm. To
change the variance of 𝑧𝑘, the parameter 𝑣 is tuned according to the problem requirements
(as 𝑣 takes smaller values, 𝑧𝑘 varies more around its expected value). Coefficient 𝐸𝑧
ensures that the expected value of 𝑧𝑘 equals 1 and thus, the SNR expected value is 𝑆(𝑝).
The system’s overall state is given by 𝑥𝑘 ≔ [𝑝𝑘, 𝑏𝑘]𝑇 , where 𝑏𝑘 stores all buffers 𝑏𝑖,𝑘 and
𝑟𝑘 includes all sampled rate functions, 𝑖 = 1, … , 𝑛𝑎, with 𝑛𝑎 denoting the total number
of field antennas. Thus:

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘, 𝑟𝑘) ≔ ( 𝑔 (𝑝𝑘, 𝑢𝑘)
min {𝑏𝑚𝑎𝑥, 𝑏𝑛𝑎,𝑘 + 𝑇𝑠 ⋅ 𝑟𝑛𝑎,𝑘} ) (2.7)

represents the system dynamics at any discrete time step 𝑘.

2.3 Methods
In this chapter we develop and study different approaches to solve the Multiple Antenna
Search. As stated earlier, two goals are followed at the same time: transferring the data
from the field transmitters (Transmission problem) and heading to the antenna centers
to better approximate their positions (Navigation problem). All algorithms (Gradient-
Ascent, TSP, Lawnmower) share the objective of transferring buffers, while the latter goal
is mostly relevant in the Gradient Ascent approach (as it always heads to the strongest
antenna signal). TSP and Lawnmower either know beforehand the approximate/exact
transmitters positions (TSP) or solve model-based equations to find them (Lawnmower).
These two methods will act as baselines for the Gradient-Ascent algorithm. Results will
be discussed for deterministic and stochastic transmission rates. Before running any
simulations, one can intuitively expect the algorithms to perform as follows:

𝑇 𝑆𝑃 < 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐴𝑠𝑐𝑒𝑛𝑡 < 𝐿𝑎𝑤𝑛𝑚𝑜𝑤𝑒𝑟

The above inequality referrers to the total number of steps (or equivalently time, for
constant 𝑢𝑘,1) required by the robot to carry out its tasks. In other words, it is expected
to obtain lower times with the TSP approach compared to the Gradient Ascent and
similarly for the Gradient Ascent to the Lawnmower method.

Note: As TSP algorithms return to their starting position after visiting all the target
points, we will consider the robot performing a Gradient Ascent/Lawnmower sweep to be
returning in its initial position after fulfilling the objectives.

8



2 Multiple Antenna Search

2.3.1 Gradient Ascent

An intuitive approach would be to follow the signal strength of the most powerful antenna
at each step. The gradient-based method uses this strategy to head to the strongest rate
function sampled from the surrounding antennas, with the goal of reaching its center and
transferring the buffer more quickly.

Therefore, at each step 𝑘 the robot samples the antennas in range and stores pairs of the
form (𝑝𝑘, 𝑟𝑖,𝑘). An approximate rate function ̂𝑟𝑖,𝑘 is then computed using Local Linear
Regression (LLR), as follows. Linear regression is applied on the closest 𝑁 neighbors to
the current agent position, then an affine approximator 𝛼𝑖 ⋅𝑝+𝛽𝑖 is built (𝛼𝑖 ∈ ℝ2; 𝛽𝑖 ∈ ℝ).
Replacing in this formula 𝑝 = 𝑝𝑘, ̂𝑟𝑖,𝑘 is found. Differentiating the form 𝛼𝑖 ⋅ 𝑝 + 𝛽𝑖 gives
a gradient estimate at the local robot position, gradient that leads to the steepest ascent
in the rate function. The gradient equals, in this case, the slope 𝛼𝑖 and is followed
by the robot with unit velocity. Note that as the maximum rate function with such a
simple approximator form would be at infinity (𝑝𝑘 → [𝑝1, ∞] ; [∞, 𝑝2] as 𝑝𝑘,1; 𝑝𝑘,2 →
±∞), the gradient ascent is mostly meaningful in the current position and the affine
approximator needs to be recomputed at next iterations. This shows that adaptive step-
size gradient ascent is impractical, as one should head straight (with maximum velocity)
to the greatest rate function increase pointed by the gradient. Iterations of 𝑝𝑘 heading
to the closest antenna will stop once a convergence test succeeds: transmission rates are
over a convergence bound (𝑐𝑏𝑛𝑑) and the last, say, 𝑠𝑝 rate samples have the mean lower
than a preset convergence threshold (𝑐𝑡ℎ𝑟) compared to the current estimate ̂𝑟𝑖,𝑘 (both
determined empirically based on algorithm results). Thus, a mean of the last 𝑠𝑝 rate
samples before reaching convergence is performed to get a better approximation of the
antenna locations. Other tests using Backtracking Armijo or Optimal Gradient Armijo [9]
were carried out, but the results obtained were poorer in terms of overall solution steps.
Another test could be the exceeding of a preset 𝑘𝑚𝑎𝑥 number of iterations per transmitter
position search.

The tuning parameters of the Gradient Ascent method are:

• 𝑁 – number of nearest neighbors for LLR;

• 𝑠𝑝 – number of sample rates considered while testing for convergence bounds.

Intuitively, higher 𝑁 and 𝑠𝑝 work better for stochastic transmission rates, and lower values
of these parameters can be chosen in the deterministic case, where faster convergence
in a lower number of steps can be achieved, due to the absence of the noise on the
communication channel.

Note: It is required that 𝑁 ≥ 3 to build the affine approximator (as it has 3 parameters:
𝛼 ∈ ℝ2, 𝛽 ∈ ℝ).

Note: While running the LLR, pairs of the form (𝑝𝑘, 𝑟𝑘) corresponding to the closest
𝑁 neighbors might not form linearly independent vectors (say, the robot is moving in
straight line). The system’s matrix is in this case singular and approximator’s parameters
cannot be found. Instead, we solve the system with the first 3 linear independent samples
found or simply return the transmission rate of the nearest neighbor if any 3 rows have
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2 Multiple Antenna Search

linear dependencies. In the latter case, define the next action deterministically as follows:

𝑢𝑘 (1) = 1m/s and 𝑢𝑘 (2) = 𝑘 ⋅ 2 ⋅ 𝜋
𝑁 . (2.8)

The pseudocode of the Gradient Ascent is presented in Algorithm 1.

2.3.2 TSP

The Travelling Salesman Problem (TSP) is a well-known and widely studied method in
the fields of combinatorial mathematics and computer science. It aims to determine the
shortest route going through a series of so-called cities (nodes of a graph) while still
returning to its initial city.

The Multiple Antenna Search represents an instance of the generic TSP due to several
reasons. Antennas visited by the mobile robot are equivalent to the TSP’s nodes through
which the salesman must travel. Also, it is required in both cases that the “traveler”
follows an optimal (as short as possible) path. Note that in the antenna problem their
exact location is not necessarily available beforehand and must be learned from samples,
while in the TSP case the node locations are fully known. The Multiple Antenna Search
has an additional objective, i.e. the transmission of the data buffers, while the TSP
focuses only on the navigation task.

In real-life applications, if one performs a Gradient-Ascent sweep, transmitter centers
become available and the TSP approach can be used afterwards. This way, buffers are
transferred faster and the robot returns sooner compared to the case in which another
Gradient Ascent sweep would be run. This leads to savings in time and power consump-
tion.

It is known that TSP is an NP-hard problem. Optimal solutions are computationally
heavy to find and if one considers using brute force algorithms the number of possible
routes to be compared for shortest length can reach up to (𝑛𝑎 − 1)!/2 (recall the total
number of antennas denoted by 𝑛𝑎). Thus, optimization approaches have been employed
to solve the TSP in reasonable amount of time. While these approaches might lead to a
sub-optimal result (not necessary the shortest route), they are still close to the optimal
path. We present next the linear search algorithm 2-Opt that uses search heuristics to
optimize (decrease) the length of the routes followed by TSP.

Given an initial solution, possibly the route drawn by the Nearest Neighbors, 2-Opt looks
for path length improvements by simply switching two arcs of the route. If the resulting
length is lowered, the new change in arcs is kept and the target nodes are swapped. This
approach continues until the route converges to a sub-optimal solution or a pre-defined
number of improvements has been reached. Intuitively, 2-Opt method gets rid of the path
crossings that can appear in the Nearest Neighbors trajectories, while still allowing the
TSP algorithm to be executed quickly.

Next, a non-recursive 2-Opt implementation will be provided, similar to [20]. The pseu-
docode of the 2-Opt is presented in Algorithm 2.
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2 Multiple Antenna Search

Algorithm 1 Gradient Ascent
Input: 𝑔, field bounds, 𝑏𝑚𝑎𝑥 max antenna buffer to transfer data from, 𝑐𝑡ℎ𝑟, 𝑐𝑏𝑛𝑑 con-

vergence threshold and bound, 𝑠𝑝 convergence samples, 𝑁 nearest neighbors to apply
LLR on, 𝑘𝑚𝑎𝑥 max number of steps per antenna iteration, 𝑛𝑎 total number of anten-
nas.

1: measure initial state 𝑥0, initialize total time steps 𝑘 = 0
2: repeat
3: sample 𝑟𝑖,𝑘 from surrounding antennas, store pairs (𝑎𝑖, 𝑝𝑘, 𝑟𝑖,𝑘) in robot memory
4: if any antenna 𝑎𝑖 in range then
5: 𝑎𝑐𝑙𝑠 = argmax𝑎𝑖

{𝑟𝑖,𝑘∣ 𝑟𝑖,𝑘 in (𝑎𝑖, 𝑝𝑘.𝑟𝑖,𝑘) just sampled}
6: else
7: 𝑎𝑐𝑙𝑠 = argmin𝑎 {||𝑝𝑘 − 𝑝|| | 𝑝 in all (𝑎, 𝑝, 𝑟) memorized pairs}
8: repeat
9: compute 𝑝𝑘+1 heading to 𝑎𝑐𝑙𝑠 and find 𝑢𝑘 leading to 𝑝𝑘+1

10: apply action 𝑢𝑘 to move robot to 𝑝𝑘+1
11: increment total time steps 𝑘 = 𝑘 + 1
12: sample 𝑟𝑖,𝑘 from surroundings, store pairs (𝑎𝑖, 𝑝𝑘, 𝑟𝑖,𝑘) in robot memory
13: if new antennas 𝑎𝑖 in range then
14: 𝑎𝑐𝑙𝑠 = argmin𝑎𝑖

{||𝑝𝑘 − 𝑝|| | 𝑝 in (𝑎𝑖, 𝑝𝑘, 𝑟𝑖,𝑘) just sampled}
15: end if
16: until undiscovered antennas in range
17: end if
18: initialize antenna 𝑎𝑐𝑙𝑠 iteration steps 𝑘𝑐𝑙𝑠 = 0
19: repeat
20: compute the mean 𝜇 of the last 𝑠𝑝 samples of 𝑟𝑐𝑙𝑠
21: if (∣∣𝜇 − 𝑟𝑐𝑙𝑠,𝑘∣∣ > 𝑐𝑡ℎ𝑟 or 𝜇 < 𝑐𝑏𝑛𝑑) and 𝑘𝑐𝑙𝑠 < 𝑘max then
22: apply LLR on neighbor pairs (𝑎𝑐𝑙𝑠, 𝑝, 𝑟𝑐𝑙𝑠) to find 𝛼𝑇 ⋅ 𝑝 + 𝛽 approximator
23: if 𝛼𝑇 ⋅ 𝑝 + 𝛽 approximator found then
24: perform normalized Gradient ascent: 𝑝𝑘+1 = 𝑝𝑘 + 𝛼
25: find 𝑢𝑘 leading to 𝑝𝑘+1
26: else
27: choose deterministic actions 𝑢𝑘 with (2.8)
28: apply action 𝑢𝑘 to move robot to 𝑝𝑘+1
29: sample 𝑟𝑖,𝑘 from surrounding antennas, store pairs (𝑎𝑖, 𝑝𝑘, 𝑟𝑖,𝑘)
30: end if
31: else if antenna location 𝑎𝑐𝑙𝑠 not marked then
32: antenna 𝑎𝑐𝑙𝑠 location found, mark it on robot map
33: end if
34: if 𝑏𝑐𝑙𝑠, 𝑘+1 < 𝑏𝑚𝑎𝑥 then
35: transfer data 𝑏𝑐𝑙𝑠, 𝑘+1 = min{𝑏𝑚𝑎𝑥, 𝑏𝑐𝑙𝑠,𝑘 + 𝑇𝑠 ⋅ 𝑟𝑐𝑙𝑠,𝑘}
36: end if
37: increment antenna iteration steps 𝑘𝑐𝑙𝑠 = 𝑘𝑐𝑙𝑠 + 1
38: until 𝑏𝑐𝑙𝑠, 𝑘 = 𝑏𝑚𝑎𝑥 and antenna 𝑎𝑐𝑙𝑠 center found
39: update total time steps 𝑘 = 𝑘 + 𝑘𝑐𝑙𝑠
40: until all 𝑛𝑎 antenna locations found
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2 Multiple Antenna Search

Algorithm 2 2-Opt
Input: 𝑛𝑎 antennas and their positions.

1: create the antenna distance matrix 𝐷, its entries 𝑑𝑖,𝑗 representing the distance between
antenna 𝑖 and 𝑗 respectively

2: define 𝜎𝑚𝑎𝑥 maximum updates to tour (trajectory) 𝑇
3: create Nearest Neighbors tour 𝑇 (always looking for the closest unvisited node in 𝐷)
4: repeat
5: initialize tour updates 𝜎 = 0
6: for 𝑥 = 1 ∶ 𝑛𝑎 − 3 do
7: for 𝑦 = 𝑥 + 2 ∶ 𝑛𝑎 − 1 do
8: if 𝐷 (𝑇 (𝑥) , 𝑇 (𝑥 + 1)) + 𝐷 (𝑇 (𝑦) , 𝑇 (𝑦 + 1)) > 𝐷 (𝑇 (𝑥) , 𝑇 (𝑦)) +

𝐷 (𝑇 (𝑥 + 1) , 𝑇 (𝑦 + 1)) then
9: swap 𝑇 (𝑥 + 1) and 𝑇 (𝑦)

10: 𝜎 = 𝜎 + 1
11: end if
12: end for
13: end for
14: until 𝜎 = 0 or 𝜎 ≥ 𝜎𝑚𝑎𝑥

The possibility of ending up with a suboptimal path length after applying 2-Opt exists.
However, the 2-Opt optimization step could be applied on a more diverse set of tours
𝑇 , not only on the Nearest Neighbors one, transforming an initial longer path into a
shorter one. We will create a more diverse route using the Randomized Nearest Neighbors
(RNN): instead of always picking the closest distance neighbor, the algorithm will consider
multiple possible candidates (closest 3 neighbors for instance) and choose one of them
randomly. The fewer possible candidates considered, the greedier the pick will be. 2-
Opt will then be applied on the resulting route and the final path will be compared in
length to other paths obtained after repeating the above procedure a pre-defined number
of times (generating multiple so-called sub-optimal paths). In other words, a Repeated
Randomized Nearest Neighbors (RRNN) method is employed. This has a greater chance
of finding the optimal path or a very close solution to it.

We call Optimal Path TSP (OPTSP) the TSP algorithm having the route built using
RRNN and 2-Opt. OPTSP assumes the positions of the transmitters to be known, so it is
a model base approach. A simple and intuitive approach will be to follow the trajectory
built using OPTSP and transfer the data from each heading antenna. The robot will
remain in the antenna center if the buffer was not yet fully transferred.

Note: We will often use the standard TSP notation from now on, even though we are
referring to the OPTSP algorithm. The RRNN and 2-Opt algorithms are implicitly used
whenever the TSP is run.

The tuning parameters of the OPTSP method are:

• 𝑁𝑐𝑎𝑛𝑑 – number of nearest neighbors’ candidates for RNN;

• 𝑘𝑝𝑎𝑡ℎ𝑠 – number of generated paths by RRNN to apply 2-Opt on.

12



2 Multiple Antenna Search

The pseudocode of the OPTSP is presented in Algorithm 3.

Algorithm 3 Optimal Path TSP (OPTSP)
Input: 𝑔, 𝑛𝑎 total number of field antennas and their positions, 𝑏𝑚𝑎𝑥 max antenna buffer,

𝑘𝑝𝑎𝑡ℎ𝑠 number of RNN sweeps and 𝑁𝑐𝑎𝑛𝑑 number of nearest neighbor candidates.
1: measure initial state 𝑥0
2: create distance matrix 𝐷 based on 𝑥0 and antenna positions 𝑎𝑖
3: create a near-optimal travelling tour 𝑇 by running RRNN with 2-Opt 𝑘𝑝𝑎𝑡ℎ𝑠 times,

considering 𝑁𝑐𝑎𝑛𝑑 candidates for RNN
4: initialize total time steps 𝑘 = 0
5: repeat
6: choose next heading antenna 𝑎𝑖 based on 𝑇
7: repeat
8: sample 𝑟𝑖,𝑘 from current heading antenna 𝑎𝑖
9: if 𝑏𝑖, 𝑘 < 𝑏𝑚𝑎𝑥 then

10: transfer data 𝑏𝑖,𝑘+1 = min{𝑏𝑚𝑎𝑥, 𝑏𝑖,𝑘 + 𝑇𝑠 ⋅ 𝑟𝑖,𝑘}
11: end if
12: if 𝑎𝑖 reached then
13: 𝑢𝑘 = 0
14: else
15: find 𝑢𝑘 leading to 𝑎𝑖 location
16: apply 𝑢𝑘 to move to 𝑎𝑖
17: end if
18: update total time steps 𝑘 = 𝑘 + 1
19: until 𝑏𝑖,𝑘+1 = 𝑏𝑚𝑎𝑥 and antenna 𝑎𝑖 reached
20: until all 𝑛𝑎 antennas visited

2.3.3 Lawnmower

The Lawnmower approach leads the robot on rectangular-shaped trajectories while the
data buffers are transferred from the strongest antenna in range, at each time step 𝑘.
These trajectories are described by the lawnmower’s resolution and have a great impact
on the navigation and transmission objectives, requiring empirical tuning. To find the
transmitter positions, it is required that knowledge of the transmission function models
is available beforehand. Knowledge of the SNR and rate function formulas (including the
parameters 𝐾𝑖, ℎ𝑖, 𝛾, 𝑅𝑖 of each antenna, all except the actual antenna locations 𝑝𝑖) is
needed to be able to approximate the transmitter positions.

Starting from (2.5), we get:

||𝑝𝑘 − 𝑝𝑖|| = ( 𝐾𝑖
𝑆𝑖 (𝑝𝑘))

1
𝛾

− ℎ𝑖 =∶ 𝜏𝑘 (2.9)

As the robot directions are of rectangular shape, next positions 𝑝𝑘+𝑙 can written as fol-
lows:

𝑝𝑘+𝑙 = { 𝑝𝑘 + 𝑙 ⋅ [𝑇𝑠 ⋅ 𝑢𝑘(1), 0], if robot moves on the x axis
𝑝𝑘 + 𝑙 ⋅ [0, 𝑇𝑠 ⋅ 𝑢𝑘(1)], if robot moves on the y axis (2.10)
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where 𝑇𝑠 ⋅ 𝑢𝑘(1) represents the distance travelled by the robot in one sampling interval
𝑇𝑠; the 𝑙𝑡ℎ step from position 𝑝𝑘 leads to 𝑝𝑘+𝑙.

From (2.9) and (2.10) one can write the following equations:

(𝑝𝑘 (1) − 𝑝𝑖 (1))2 + (𝑝𝑘 (2) − 𝑝𝑖 (2))2 = 𝜏2
𝑘 (2.11)

(𝑝𝑘+𝑙 (1) − 𝑝𝑖 (1))2 + (𝑝𝑘+𝑙 (2) − 𝑝𝑖 (2))2 = 𝜏2
𝑘+𝑙 (2.12)

The last equation is equivalent to:

(𝑝𝑘 (1) + 𝑙 ⋅ 𝑇𝑠 ⋅ 𝑢𝑘(1) − 𝑝𝑖 (1))2 + (𝑝𝑘 (2) − 𝑝𝑖 (2))2 = 𝜏2
𝑘+𝑙 (6) (2.13)

or equivalently

(𝑝𝑘 (1) − 𝑝𝑖 (1))2 + (𝑝𝑘 (2) + 𝑙 ⋅ 𝑇𝑠 ⋅ 𝑢𝑘(1) − 𝑝𝑖 (2))2 = 𝜏2
𝑘+𝑙 (2.14)

Subtracting (2.11) and (2.14) and performing a series of computations leads to:

𝑝𝑖 (𝑗) =
𝜏2

𝑘 − 𝜏2
𝑘+𝑙

2 ⋅ 𝑙 ⋅ 𝑇𝑠 ⋅ 𝑢𝑘(1) + 𝑙 ⋅ 𝑇𝑠 ⋅ 𝑢𝑘(1)
2 + 𝑝𝑘 (𝑗) (2.15)

where 𝑗 ∈ {1; 2} and 𝑝𝑘 = [𝑝𝑘(1), 𝑝𝑘(2)]𝑇 .

This semi-model-based approach will become useful in the case of Rice fluctuations, as
the rates are highly influenced by the noise of the transmission channel. Pairs of the
form (𝑝𝑘, 𝜏𝑘) and (𝑝𝑘+𝑙, 𝜏𝑘+𝑙) are plugged first in (2.11) and (2.12); then using (2.15) an
approximation of the antenna position ̂𝑝𝑖 is computed. Performing a mean over multiple
approximate values of ̂𝑝𝑖 will, ideally, give a better approximation of 𝑝𝑖.

Note: We informally define a ‘sub-field’ of the whole field to be a part of it described by the
mower trajectory composed of one vertical sweep on the y axis and one horizontal sweep
on the x axis. Figure 2.2 shows a ‘sub-field’ sample along with the mowing trajectory.

The tuning parameters of the Lawnmower method are:

• 𝑤𝑚𝑜𝑤 – (sub-field) mower trajectory width;

• ℎ𝑚𝑜𝑤 – (sub-field) mower trajectory height;

• 𝑢𝑘(1) – mower velocity while performing sweeps on the width and height of the
field.

The step size and implicitly the number of steps the mower performs on the horizontal
and vertical sweeps need to be carefully determined, otherwise antenna locations could
be missed or buffers not fully transmitted (provided multiple antennas are close to each
other in a given field region).

The pseudocode of the Lawnmower method is presented in Algorithm 4.
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Figure 2.2. On the left, a possible robot lawnmower trajectory is given. A so-called ‘sub-field’ describing
a vertical sweep followed by a horizontal one is plotted on the right.

Algorithm 4 Lawnmower
Input: 𝑔, 𝑤𝑓𝑖𝑒𝑙𝑑, ℎ𝑓𝑖𝑒𝑙𝑑 field width and height, SNR and transmission rate models

(𝐾𝑖, ℎ𝑖, 𝛾, 𝑅𝑖 of each antenna), 𝑤𝑚𝑜𝑤 sub-field width, ℎ𝑚𝑜𝑤 sub-field height, 𝑏𝑚𝑎𝑥
max antenna buffer to transfer data from, 𝑢𝑘(1) mower velocity.

1: measure initial state 𝑥0
2: compute the number of sub-fields 𝑠𝑓 = 𝑤𝑓𝑖𝑒𝑙𝑑

𝑤𝑚𝑜𝑤
or 𝑠𝑓 = ℎ𝑓𝑖𝑒𝑙𝑑

ℎ𝑚𝑜𝑤
3: for 𝑙 = 1, 2, … , 𝑠𝑓 do
4: repeat at each time step 𝑘 = 0, 1, 2, …
5: sample 𝑟 from surroundings, store pairs (𝑎, 𝑝, 𝑟) in robot memory
6: if any antenna 𝑎𝑖 in range then
7: 𝑎𝑐𝑙𝑠 = argmax𝑎 {𝑟| 𝑟 in (𝑎, 𝑝, 𝑟) just sampled with 𝑏𝑐𝑙𝑠,𝑘 < 𝑏𝑚𝑎𝑥}
8: transfer data 𝑏𝑐𝑙𝑠,𝑘+1 = min{𝑏𝑚𝑎𝑥, 𝑏𝑐𝑙𝑠,𝑘 + 𝑇𝑠 ⋅ 𝑟}
9: end if

10: find 𝑢𝑘 leading to 𝑝𝑘+1 on the sub-field trajectory (2.10)
11: apply 𝑢𝑘
12: until sub-field trajectory finished
13: end for
14: solve model-based equations of the form (2.15) using the stored samples to get an

array of antenna position approximations
15: perform a mean on array positions to get the location of each antenna

2.4 Experiments and discussion for deterministic rates
In simulations, the motion dynamics (2.1) are used. Recall that 𝑔 ∶ 𝑃 × 𝑈 → 𝑃, 𝑝𝑘+1 =
𝑔(𝑝𝑘, 𝑢𝑘). To run the algorithms, we take 𝑃 = [0; 200]2m as the field and 𝑈 the set of
actions of the form 𝑢𝑘 = [𝑢𝑘(1), 𝑢𝑘(2)], where 𝑢𝑘(1) ∈ {0; 1}m/s is the robot speed and
𝑢𝑘(2) ∈ [−𝜋; 𝜋] is the robot heading or the direction pointed to by the local gradient
estimate. The antenna buffers to be transferred will have a moderate size of 400Mbit.
Consider initially the sampling time 𝑇𝑠 = 2s.

To simulate the transmitters signals (SNR, rate function), all antennas will be modeled
using (2.4) and (2.5). Thus, take the Rice coefficient 𝑧𝑘 = 1 corresponding to the deter-
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ministic case, 𝑅0 = 0.75, 𝐾 = 104, SNR shape ℎ = 1 and the path loss exponent of the
free space 𝛾 = 2. 𝑛𝑎 = 10 antennas will be spread uniformly randomly throughout the
field 𝑃 .

In the next subsections, all algorithms will be examined for:

• trajectories followed by the robot,

• tuning of the parameters until (near-)optimal solutions are obtained in terms of
total number of steps 𝑠𝑡𝑜𝑡𝑎𝑙 (time efficiency for constant robot velocity) and average
mean squared error 𝑎𝑣𝑔𝑀𝑆𝐸 (between antenna real positions and approximated
ones),

• overall performance comparison for all methods discussed.

Note: The average mean squared error (𝑎𝑣𝑔𝑀𝑆𝐸) is evaluated as follows:

1
𝑛𝑎

⋅
𝑛𝑎

∑
𝑖=1

||𝑝𝑖 − ̂𝑝𝑖||
2 (2.16)

where 𝑝𝑖 and ̂𝑝𝑖 respectively represent the real and the approximated position of the 𝑖𝑡ℎ

antenna.

2.4.1 Gradient Ascent

Trajectory Trajectories described by this algorithm are not necessary the shortest paths
in terms of steps, because the agent is always heading to the strongest antenna signal in
range, without considering the minimization of the overall trajectory length (unlike TSP).

For a given set of antenna positions, the ideal trajectory chosen by the Gradient As-
cent algorithm is presented in Figure 2.3 (ideal by ignoring the approximations done by
the LLR, for instance, that sometimes avoids straight line trajectories due to the linear
dependencies of the samples (𝑝𝑘, 𝑟𝑖,𝑘), thus building longer routes).

Here, a pair of arcs (roads) crossing each other can be observed. This makes sense, as the
robot will always choose the antenna with the strongest signal to head to (in the gradient
approach), without considering lowering the overall length of the path. This drawback is
solved in the TSP case, where the shortest path is obtained and followed by the robot.

Running the algorithm for the initial setting 𝑁 = 4 and 𝑠𝑝 = 6, gives good results:
𝑠𝑡𝑜𝑡𝑎𝑙 = 651 and 𝑎𝑣𝑔𝑀𝑆𝐸 = 0.49 (Figure 2.4).

Note: Robot position at given steps is marked with a disc, its color indicating the buffer
size transferred so far from the current antenna (dark blue – empty buffer, dark red – full
buffer). The segment linking the robot initial position and the uppermost transmitter
is the returning direction of the robot (to its starting position). No data transfers are
performed during this return.

Influence of tuning parameters The first parameter to be tuned is the number of nearest
neighbors used by the LLR to find the affine approximator 𝛼 ⋅ 𝑝𝑘 + 𝛽. It is required that
𝑁 ≥ 3 to build the approximator (as it has 3 parameters: 𝛼 ∈ ℝ2, 𝛽 ∈ ℝ) and 𝑁 ≤ 6 to
not make LLR too computationally heavy.
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2 Multiple Antenna Search

Figure 2.3. Ideal trajectory described by the robot when performing a Gradient-Ascent sweep on a given
set of antenna positions.

Figure 2.4. The trajectory and the evolution of the buffer sizes transferred from each antenna during a
Gradient Ascent sweep. The colored disks show the position of the robot at each three sampling times
and highlight the amount of buffer transferred from the heading antenna (dark blue represents an empty
buffer and dark red a full one). The initial robot position is denoted with a black “+” mark, antenna real
positions with a red “×” and their approximate positions with a blue “+” mark. The robot’s return path
is shown by the segment linking the last visited antenna and its initial position. Near each antenna, the
real position written as “[x, y]” is situated above the Gradient Ascent’s approximated position.
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To get reliable insight regarding the best choice of 𝑁 , 25 different algorithm runs will
be performed, each on a different set of antenna positions generated uniformly randomly
inside the field. Corresponding 𝑠𝑡𝑜𝑡𝑎𝑙 and 𝑎𝑣𝑔𝑀𝑆𝐸 will be reported for each choice of 𝑁 .

Figure 2.5. Average number of steps and mean squared error obtained running 25 Gradient Ascent sweeps,
each on a different antenna positions setting. Results are obtained while tuning the number of nearest
neighbors (N) used by the LLR.

As Figure 2.5 suggests, 𝑁 = 4 is the best choice in terms of both 𝑠𝑡𝑜𝑡𝑎𝑙 and 𝑎𝑣𝑔𝑀𝑆𝐸.
On average, for 𝑁 = 4, one Gradient Ascent run takes 𝑠𝑡𝑜𝑡𝑎𝑙 = 661 and 𝑎𝑣𝑔𝑀𝑆𝐸 = 0.26.

Next we study the parameter 𝑠𝑝 used for testing the convergence (obtained when the
robot is very close to the heading antenna’s position).

Note that the antennas’ maximum transmission rates, obtained when robot is on top of
the antenna, are in this case around 10Mbit/s (±5% variations). The convergence bound
should be taken large enough to not allow the algorithm to converge too fast thinking
that it has found the heading antenna, as at the beginning of the antenna searching rates
are low (≤ 1Mbit/s) and close in value to each other. Tests have shown that a value of
𝑐𝑏𝑛𝑑 = 2Mbit/s can be used as convergence bound.

Plotting a single result of the transmission rates evolution till the convergence to an
antenna position (Figure 2.6) shows that the chosen convergence bound 𝑐𝑏𝑛𝑑 = 2Mbit/s
makes sense, as around this value a more pronounced exponential increase in the rate
function can be noticed (again, recall that the SNR form has an exponential decrease
due to the factor 𝛾 at the denominator); an oscillating behavior of the rates occurs after
robot gets in close proximity to the center and reaches the steady state output of the
rate function, and, as it doesn’t adjust its step size accordingly (only moves of length
𝑢𝑘(1) ⋅ 𝑇𝑆 = 2m), it will continue oscillating . Thus, a mean of an even number of 𝑠𝑝
samples will be chosen.

Running the Gradient Ascent on 25 (different) antenna position settings, one can observe
the impact of 𝑠𝑝 ∈ {4; 6; … ; 18} on both 𝑠𝑡𝑜𝑡𝑎𝑙 and 𝑎𝑣𝑔𝑀𝑆𝐸. 𝑠𝑡𝑜𝑡𝑎𝑙 has a linear growth
with the increase in 𝑠𝑝 while 𝑎𝑣𝑔𝑀𝑆𝐸 has an exponential decrease as 𝑠𝑝 gets higher.
Cases of 𝑠𝑝 ∈ {6; 8} produce less than a half 𝑎𝑣𝑔𝑀𝑆𝐸 compared to the case of 𝑠𝑝 = 4 and
double compared to 𝑠𝑝 ∈ {10; 12; … ; 18}. As large 𝑠𝑝 values (10; 12 … ) reach a plateau in
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2 Multiple Antenna Search

Figure 2.6. Evolution of the approximated transfer rates as robot approaches the antenna location. Rates
increase exponentially until robot reaches a position close to the antenna’s center. Afterwards, rates reach
the steady state and begin to oscillate as the robot does not adjust its step size and continues to perform
movements of constant length. A convergence test that detects the steady state response is defined to show
that the antenna location was found.

terms of 𝑎𝑣𝑔𝑀𝑆𝐸 producing large path lengths, any values below 𝑠𝑝 < 10 could work. To
conclude, the value 𝑠𝑝 = 6 for the deterministic case was chosen, as 𝑠𝑡𝑜𝑡𝑎𝑙 = 662.32 and
𝑎𝑣𝑔𝑀𝑆𝐸 = 0.24 obtained represent good results (lowering 𝑠𝑡𝑜𝑡𝑎𝑙 might be more critical
– energy consumption – compared to the antenna positions accuracy, in which for most
applications an 𝑎𝑣𝑔𝑀𝑆𝐸 ≈ 0.25 could be accepted).

Figure 2.7. Average number of steps and mean squared error obtained after running 25 Gradient Ascent
sweeps, each on a different antenna positions setting. Results obtained while tuning number of rates (𝑠𝑝)
considered for the convergence test.

According to Figure 2.7, a good parameters setting for the Gradient Ascent (deterministic
case) is: 𝑁 = 4 and 𝑠𝑝 = 6.
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2.4.2 TSP

Trajectory In the TSP case, the paths generated are near optimal when it comes to the
distance to be travelled by the robot. A possible example of such a trajectory can be
seen in Figure 2.8 (position of the transmitters is kept from the previous Gradient Ascent
trajectory study; note that the path crossing was successfully removed).

Figure 2.8. TSP trajectory drawn by the robot on a given set of antenna positions. Note that any trajectory
crossings present in the Gradient-Ascent route were removed due to the use of 2-Opt and RRNN.

TSP results show 𝑠𝑡𝑜𝑡𝑎𝑙 = 476, compared to the 𝑠𝑡𝑜𝑡𝑎𝑙 = 651 obtained by the Gradient
Ascent sweep, that is a decrease of 26.9%. Also, the ideal Nearest Neighbors path followed
by the robot for the gradient-based algorithm is 20% longer than the route built using
RRNN and 2-Opt (789.76 vs 659.64).

A sample of trajectory and buffers size evolution when using the TSP method is presented
in Figure 2.9.

Influence of tuning parameters 𝑁𝑐𝑎𝑛𝑑 and 𝑘𝑝𝑎𝑡ℎ𝑠 affect the final near optimal path as
follows: the greater the 𝑁𝑐𝑎𝑛𝑑 the less greedy the RNN generated tour will be and thus
more varied routes will be built. By increasing 𝑘𝑝𝑎𝑡ℎ𝑠, the chance of converging to the
optimal path after applying 2-Opt increases. Tuning of these parameters can be done
straightforwardly: 𝑁𝑐𝑎𝑛𝑑 = 3 is picked from [21] along with 𝑘𝑝𝑎𝑡ℎ𝑠 = 100 setting, obtain-
ing good results (10% shorter paths on average compared to the Nearest Neighbors case).
As in [21] the number of cities was 85, any number lower that this can use these settings
as well (above simulations were run on 10 transmitters, “cities”).

Note: Finding the optimal path for TSP using the above approach can be done before
the robot starts its trajectory. Recall that in this case the antenna positions are known
beforehand. The RRNN and 2-Opt efficiency is therefore not critical for the online simu-
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Figure 2.9. Evolution of the buffer sizes transferred from each antenna during a TSP sweep, given a set
of antenna positions.

lation and tuning the parameters of this method can be made directly based on “expert
knowledge” available in the literature and common sense.

Running TSP on 25 different antenna position settings (quantitative analysis on above
parameters) show an average of 𝑠𝑡𝑜𝑡𝑎𝑙 = 449.5. Compared to the Gradient Ascent average
𝑠𝑡𝑜𝑡𝑎𝑙 = 662.32, TSP achieves 32.2% less trajectory steps.

2.4.3 Lawnmower

Trajectory The path described by the robot is the same as the one presented in Figure 2.2
with the only difference that the robot returns to its initial state (like TSP and Gradient
Ascent algorithms). Thus, the resulting path has a total of 𝑠𝑡𝑜𝑡𝑎𝑙 = 1200, that is about 2
and 3 times more steps (on average) compared to the Gradient Ascent and TSP methods
respectively.

Note: In the deterministic case, the Lawnmower method finds the transmitter centers
solving model-based equations, so all centers approximated are in fact the actual, real
positions of the antennas and thus 𝑎𝑣𝑔𝑀𝑆𝐸 = 0. It will make more sense to study the
𝑎𝑣𝑔𝑀𝑆𝐸 in the fluctuations case.

Influence of tuning parameters The parameters have been tuned empirically to ensure
that the data buffers are transmitted before the robot finishes its trajectory. The param-
eter values obtained are: 𝑤𝑚𝑜𝑤 = 20, ℎ𝑚𝑜𝑤 = 200 and robot velocity 𝑢𝑘(1) = 1m/s.

The evolution of the buffer sizes can be seen in Figure 2.10, along with each change in
antenna id that the robot is transferring data from “[< 𝑎𝑛𝑡𝑖𝑑 >] ∶”, at any given time.
Also, note that “(< 𝑎𝑛𝑡𝑖𝑑 >)” represents the id of the antenna plotted near its label. Once
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all buffers have been transferred, label ‘[0]:’ is plotted, meaning that no more transfers are
occurring. Disk colors and meaning remain unchanged from previous simulation plots.

Figure 2.10. Trajectory and evolution of the buffer sizes gathered by the robot during a Lawnmower sweep.

Note: Since the method parameters were tuned empirically and the transmitters positions
are generated randomly (uniformly distributed), the robot does not finish the data trans-
fers exactly at the end of the lawnmower trajectory, but earlier. If the robot successfully
carries out this task, it simply follows the trajectory without transferring data but still
acquiring and storing in memory pairs of the form (𝑝𝑘, 𝑟𝑖,𝑘), later used for estimating
antenna centers (useful especially in the case of stochastic rate functions).

Both the Lawnmower and TSP use to some extent “expert knowledge” and can therefore
be considered model based methods. The Lawnmower method knows the function rate
model and has access to the parameters 𝐾𝑖, ℎ𝑖, 𝛾, 𝑅𝑖 of each antenna, while TSP requires
that antenna positions to be available. Comparing the results, these algorithms give
valuable insight and act as baselines for the unknown rate model and transmitter positions
Gradient Ascent. Concluding:

𝑇 𝑆𝑃 < 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐴𝑠𝑐𝑒𝑛𝑡 < 𝐿𝑎𝑤𝑛𝑚𝑜𝑤𝑒𝑟

in terms of 𝑠𝑡𝑜𝑡𝑎𝑙, all methods being able to fully transfer the data buffers from the
antennas.

2.5 Experiments and discussion for stochastic rates
To simulate the presence of the noise on the transmission channel, Rice coefficients will
be chosen in the rate function formula (2.4). A moderate noise level is obtained by taking
𝑣 = 15, in which case most of the probability mass falls into the interval 𝑧𝑘 ∈ {0.75; 1.25}.
This is about 25% variation compared to the deterministic case (or the expected value).

2.5.1 Gradient Ascent

First, we start by running the algorithm keeping the parameters tuned in the deterministic
case, i.e. 𝑁 = 4, 𝑠𝑝 = 6. Recall the sampling time value of 𝑇𝑠 = 2s.
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Figure 2.11. Trajectory obtained running the Gradient Ascent method in the fluctuations case, given a
set of antenna locations. Keeping the parameters setting from the deterministic case gives poor results as
there remain unfound antenna locations. Intuitively, the algorithm sampling time 𝑇𝑠 = 2s needs to be
increased.

Results show 𝑠𝑡𝑜𝑡𝑎𝑙 = 1357 and an 𝑎𝑣𝑔𝑀𝑆𝐸 = 4556.95, which are poor results. Unfor-
tunately, even if one increases 𝑁 or 𝑠𝑝 results do not become significantly better (most
antennas remain undiscovered).

As an intuition, for lower values of the approximator’s gradient, i.e. far away antennas
that lead to low transmission rates, the gradient is drowned by noise. Also, if the step
size of the mobile robot has a low value, the chance of reaching the antenna position in
the presence of noise decreases drastically. This is because only samples that are taken
farther away from each other provide informative enough data and can mitigate the noise.
We express the step size as follows: 𝑢𝑘(1) ⋅ 𝑇𝑠, where 𝑢𝑘(1) = 1m/s is the fixed robot max
speed. A simple and intuitive approach to solve the above shortcoming to noise would be
to increase the sampling time, e.g. 𝑇𝑠 = 3.

We run the simulation this time with the setting 𝑇𝑠 = 3s and obtain 𝑠𝑡𝑜𝑡𝑎𝑙 = 970 and
𝑎𝑣𝑔𝑀𝑆𝐸 = 20.79. This time results get closer to the deterministic case. Thus, it
could pay off studying a larger 𝑇𝑠 in the fluctuation case. Note that these 𝑠𝑡𝑜𝑡𝑎𝑙 = 970
are for larger step size of 𝑢𝑘(1) ⋅ 𝑇𝑠 = 3m, and as 𝑇𝑠 = 3s, they are translated into
𝑡𝑖𝑚𝑒 = 𝑠𝑡𝑜𝑡𝑎𝑙 ⋅ 𝑇𝑠 = 970 ⋅ 3 = 2910sec. Figure 2.12 shows the results.

Algorithm sampling time will be quantitatively analyzed in the interval 𝑇𝑠 ∈ {2; 2.2; … ; 3.8}
to see what value would be the most appropriate. For this, 10 different (uniformly dis-
tributed random) antenna positions have been created and each such setting will have the
Gradient Ascent method run for 20 times. Results are presented in Figure 2.13.

However, recall that larger steps lead to higher time spent by the robot on the field. A
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Figure 2.12. Trajectory obtained running the Gradient Ascent method after increasing the sampling time
to 𝑇𝑠 = 3s. All antenna locations were found, however, the position accuracy could be improved by
retuning the parameters.

Figure 2.13. Average number of steps and mean squared error obtained running 20 Gradient-Ascent
sweeps, each on 10 different antenna position settings. Results obtained (on a noisy communication
channel) while tuning the algorithm sampling time (𝑇𝑠).

quick conversion from 𝑠𝑡𝑜𝑡𝑎𝑙 to time(seconds) leads to the following graphs in Figure 2.14.

Thus, values of 𝑇𝑠 ∈ {3; 3.2} can work well both in terms of 𝑠𝑡𝑜𝑡𝑎𝑙 and 𝑎𝑣𝑔𝑀𝑆𝐸. Value
𝑇𝑠 = 3 will be chosen because it results in less overall trajectory time, as one can decrease
the 𝑎𝑣𝑔𝑀𝑆𝐸 by increasing 𝑁 . The impact of 𝑁 will be studied next, taking 𝑁 ∈
{4; 5; 6; 7; 8} and running the algorithm on the same 10 antenna position settings as
above. Intuitively, the larger the 𝑁 , the less the 𝑎𝑣𝑔𝑀𝑆𝐸 becomes (as it better rejects
the noise).

Choosing 𝑁 ∈ {7; 8} leads to good results. 𝑁 = 7 will be taken so that 𝑎𝑣𝑔𝑀𝑆𝐸 = 9.46
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Figure 2.14. Average number of seconds and mean squared error obtained running 20 Gradient Ascent
sweeps, each on 10 different antenna position settings. Results obtained (on a noisy communication
channel) while tuning the algorithm sampling time (𝑇𝑠).

Figure 2.15. Average number of steps and mean squared error obtained running 20 Gradient Ascent
sweeps, each on 10 different antenna position settings. Results obtained (on a noisy communication
channel) while tuning the number of nearest neighbors (𝑁) used by the LLR.

is 20 times smaller compared to the previous case when 𝑁 = 4 (≈ 210 𝑎𝑣𝑔𝑀𝑆𝐸). Note
that due to the stochastic behavior of the SNR (Rice noise), 𝑠𝑡𝑜𝑡𝑎𝑙 and 𝑎𝑣𝑔𝑀𝑆𝐸 can
differ a bit from one simulation batch to the other.

The number of samples considered while testing the convergence, 𝑠𝑝, will be tuned next.
Consider the simulation running for the same settings as above (20 different runs for 10
different antenna position settings) and 𝑠𝑝 ∈ {4; 6; 8; 10; 12}.

A good tradeoff between 𝑠𝑡𝑜𝑡𝑎𝑙 and 𝑎𝑣𝑔𝑀𝑆𝐸 would be achieved for 𝑠𝑝 = 6, for which the
results are similar to the ones obtained at the previous step (as there 𝑠𝑝 = 6 was also a
good setting in the deterministic case).

To conclude, parameters obtained after the tuning process are 𝑇𝑠 = 3s, 𝑁 = 7, 𝑠𝑝 = 6.
𝑎𝑣𝑔𝑀𝑆𝐸 ≈ 10 and 𝑠𝑡𝑜𝑡𝑎𝑙 = 667.33. In terms of trajectory seconds, 𝑡𝑖𝑚𝑒 = 𝑠𝑡𝑜𝑡𝑎𝑙 ⋅ 𝑇𝑠 =
2002s compared to 𝑡𝑖𝑚𝑒 = 𝑠𝑡𝑜𝑡𝑎𝑙 ⋅ 𝑇𝑠 = 662.32 ⋅ 2 = 1324.6s obtained in the deterministic
case. That is about 33% more time required by the robot to finish transferring the buffers
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Figure 2.16. Average number of steps and mean squared error obtained running 25 Gradient Ascent
sweeps, each on 10 different antenna position settings. Results obtained (on a noisy communication
channel) while tuning the number of rates (𝑠𝑝) considered for the convergence test.

and approximate the centers. 𝑎𝑣𝑔𝑀𝑆𝐸 on the other hand, increased from 0.24 to about
10 which represents roughly 3m in error from the real antenna positions. The Gradient
Ascent performs poorly in the fluctuations case when estimating the transmitter centers,
since it uses derivatives of the rate function that (in the stochastic case) are noisy. If one
requires better position estimates, 𝑎𝑣𝑔𝑀𝑆𝐸 = 1.98 can be obtained for larger 𝑠𝑝 = 10,
but at the cost of 25% more trajectory steps.

Lastly, recall the antenna locations setting chosen for experiments in Figure 2.12. It
would be interesting to compare the improvements after tuning the parameters. For this,
20 different trajectory sweeps were performed on the same antenna positions. One such
trajectory is presented in Figure 2.17.

Compared to the initial simulations, the trajectory in Figure 2.17 shows noticeably straight-
er paths drawn by the robot while heading to a given antenna. Results show an 𝑎𝑣𝑔𝑀𝑆𝐸 =
6.91 and 𝑠𝑡𝑜𝑡𝑎𝑙 = 742.10, more accurate antennas’ localization but at the cost of more
𝑠𝑡𝑜𝑡𝑎𝑙. Two conclusions can be drawn: results are highly dependent on the antenna loca-
tions setting and the Gradient Ascent trajectory is highly influenced by the fluctuations,
especially when inter-antenna distances are large.

2.5.2 TSP

50 trajectories will be run to estimate 𝑠𝑡𝑜𝑡𝑎𝑙 and then results will be compared with the
Gradient Ascent and the deterministic TSP. 𝑇𝑠 = 3s is chosen for the simulations to make
the comparison relevant for the stochastic case.

Results show 𝑠𝑡𝑜𝑡𝑎𝑙 = 303.66 average steps per 50 different antenna position settings. This
is almost half (55% less) compared to the Gradient Ascent 𝑠𝑡𝑜𝑡𝑎𝑙 = 667.33. Translated
in time 𝑡𝑖𝑚𝑒 = 𝑠𝑡𝑜𝑡𝑎𝑙 ⋅ 𝑇𝑠 = 303.66 ⋅ 3 = 910.98 𝑠𝑒𝑐, while in the deterministic TSP case
𝑡𝑖𝑚𝑒 = 𝑠𝑡𝑜𝑡𝑎𝑙 ⋅ 𝑇𝑠 = 449.5 ⋅ 2 = 899 𝑠𝑒𝑐, virtually similar results. This makes sense as in
the TSP case antenna centers are known beforehand and there is no need for the robot
to learn them from samples.

26



2 Multiple Antenna Search

Figure 2.17. Trajectory obtained by running the Gradient Ascent method after parameters tuning. Antenna
locations setting was kept from the initial simulations done in the fluctuations case. Compared to them,
the trajectory shows noticeably straighter paths drawn by the robot while heading to a given antenna.

2.5.3 Lawnmower

As the lawnmower trajectory is predefined before the actual robot sweep of the field,
the change in the sampling time is not relevant. Thus, the algorithm will run with
the old setting of 𝑇𝑠 = 2s and the time in seconds will be directly compared to the
other methods run in the fluctuations case. We obtain 1200 steps that translate into
𝑡𝑖𝑚𝑒 = 𝑠𝑡𝑜𝑡𝑎𝑙 ⋅ 𝑇𝑠 = 1200 ⋅ 2 = 2400s. This means 20% more that the 2002s of the
𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐴𝑠𝑐𝑒𝑛𝑡 and roughly 2.6 times the 910.98s of the TSP method.

Again, the inequality from above still holds true for stochastic transmission rates:

𝑇 𝑆𝑃 < 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐴𝑠𝑐𝑒𝑛𝑡 < 𝐿𝑎𝑤𝑛𝑚𝑜𝑤𝑒𝑟

but this time the Gradient Ascent results are closer to the Lawnmower than to the TSP.

In terms of 𝑎𝑣𝑔𝑀𝑆𝐸 = 8.67, that is about 2.94m average error from the real center
position for each antenna. This is about the same as in the Gradient Ascent case, but at
the cost of knowing the transmission rate model and its corresponding parameters.

2.6 Conclusion
Three types of algorithms have been developed and studied for the multiple antenna
problem. Overall, in the deterministic case we obtained good results for the Gradient
Ascent compared to its baselines (TSP, Lawnmower). In the fluctuations case, however,
both the 𝑠𝑡𝑜𝑡𝑎𝑙 and 𝑎𝑣𝑔𝑀𝑆𝐸 increased. This is partly due to the noise affecting the
measurements when the rate function is stochastic. Note that results of the Gradient
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Ascent are highly dependent on the inter-antenna distances, since if the next heading
transmitter is far away from the current robot position its received signal will be drowned
by noise, possibly breaking the algorithm.

Therefore, advanced path planning algorithms should be developed in the future to better
deal with the noise present on the communication channel.
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3 Path-Aware Global Optimization
3.1 Introduction and motivation
We design and evaluate a method for a mobile robot to sample an unknown function
defined over its operating area or volume, so as to find the global optimum of this function.
The key difference from classical optimization is that the path taken by the robot is
important. We call this scenario “Path-Aware Global Optimization”. It can be useful
in many practical scenarios, where the optimum sought could be e.g. of some physical
measurement such as pollutant concentration, temperature, humidity etc. [7], [22], of the
density of surface or underwater ocean litter, the largest-bandwidth location for radio
transmission [5], the largest sand height on the seabed for dredging, maximal or minimal
forest density in inaccessible areas [6], and so on.

Optimization techniques are, of course, closest to our method. However, as stated above,
unlike in classical optimization here the path travelled by the robot matters, since it
influences energy and time costs; and the function is unknown and must be learned from
samples. As a first approximation, we use the length of the path as a proxy for the costs,
although of course more accurate models are possible that take into account the dynamics
of the robot, the terrain etc.

Local optimization methods like gradient descent, which iteratively update a single point,
would suit the setup well after modifications to handle the unknown function by approx-
imating derivatives from samples. We do evaluate such an alternative; of course, the
fundamental limitation is that these methods can only find a local optimum.

Global optimization techniques [23] on the other hand, like branch-and-bound, see [24],
Chapter IV of [23] or Bayesian optimization [25], [26] usually make arbitrarily large
“jumps” in the space of solutions to sample a new point. Here, large steps are unsuitable
because they would overcommit: the robot samples the unknown function as it travels, so
during a long path, new information becomes available, and the old travel direction might
become suboptimal. Continuing along it would waste energy and time. Population-based
techniques like genetic algorithms [27] or particle swarm optimization [28] would require
large teams of robots, which are often unfeasible in practice.

To solve the Path-Aware Global Optimization problem, we extend an algorithm from the
branch-and-bound class, deterministic optimistic optimization (DOO) [10], [12]. DOO
organizes the search space as a tree containing at each depth a partition of the space,
where the size of the subsets decreases with the depth. It makes a Lipschitz continuity
assumption on the function and refines at each iteration a tree node with a maximal
upper bound on the function value (i.e. a node that is likely to contain an optimum).
We pick DOO because of its soundness: it guarantees a convergence rate towards the
global optimum, which in essence says that only a “subspace” of a certain near-optimality
dimension must be sampled to find the optimum [10]. These are important features for
path-aware optimization.

To make DOO path-aware, we formulate the decision of which direction to go at each
time step as an optimal control problem. Due to overcommitment, we do not immedi-
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ately sample the largest-upper bound location, as DOO would, but we still exploit the
underlying objective: to refine the upper bound around the optima. Specifically, the
reward in the control problem is the volume by which each decision refines (lowers) the
upper bound, weighted by the bound and function values to focus the refinement around
the optima. Then, we run a dynamic programming algorithm [29] to solve the control
problem of maximizing the cumulative weighted refinements along the trajectory. The
path length to find a good upper bound, and hence a good estimate of the optimum, is
implicitly reduced by this objective.

Solving the optimal control problem exactly at each decision step is impossible, both due
to computational reasons and because finding the exact reward would require to know the
future function samples. Therefore, we must resort to certain approximations, which we
detail in the remainder of the paper. We validate the algorithm in extensive simulations,
in which we study the impact of the tuning parameters of the algorithm, its robustness to
errors in the Lipschitz constant, and compare it to baselines adapted from classical DOO
and gradient ascent.

Related work can be found in other fields than optimization. For example, in robotics,
mapping requires building a map of the environment, and leads to the famous SLAM
problem [30] when the location of the robot is also unknown. Informative path planning
chooses the path of a robot so as to find a map or other quantity of interest in as few steps
as possible [31]–[33]. Other variants, like coverage [34], aim to find a shortest path that
examines the entire space using the robot sensors. Different from all these paradigms, the
aim here is not to build or sense the entire function, but rather just to find the optimum
as quickly as possible.

In artificial intelligence, bandit algorithms are a class of sample-based optimization of
stochastic functions [11]. They also overcommit by sampling at arbitrary distances, and
must typically sample at least once everywhere to start building their estimates.

3.2 Preliminaries
DOO is an algorithm belonging to the branch-and-bound class that aims to estimate
the optimum of a function 𝑓 ∶ 𝑋 → ℝ from a finite number of function evaluations.
It sequentially splits the search space 𝑋 into smaller partitions and samples to expand
further only those partitions associated with the highest upper bound values. After the
numerical budget has been exhausted, the algorithm approximates the maximum as the
state with the highest 𝑓 value evaluated so far. An assumption made by DOO is that
there exists a (semi) metric over 𝑋, denoted by 𝑙, and 𝑓 is Lipschitz continuous w.r.t.
this metric at least around its optima, in the sense:

𝑓(𝑥∗) − 𝑓(𝑥) ≤ 𝑙(𝑥∗, 𝑥), ∀𝑥 ∈ 𝑋 (3.1)

where 𝑥∗ ∈ argmax𝑥∈𝑋𝑓(𝑥). Note that for convenience, we will require here the inequality
property to hold for any pair (𝑥, 𝑦) ∈ 𝑋2:

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑙(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋 (3.2)
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and the Euclidean norm weighted by the Lipschitz constant will be chosen as the metric
𝑙 over 𝑋:

𝑙(𝑥, 𝑦) = 𝑀||𝑥 − 𝑦||, ∀𝑥, 𝑦 ∈ 𝑋 (3.3)

where 𝑀 represents the Lipschitz constant. The method can be extended to any metric
𝑙 obeying the assumptions present in [12].

Here we will also use an alternative approach to the partition splitting in DOO: the
construction of a so-called “saw-tooth” upper bound [12], defined as 𝐵 ∶ 𝑋 → ℝ so that:

𝑓(𝑥) ≤ 𝐵(𝑥) = min
(𝑥𝑠,𝑓(𝑥𝑠))∈𝑆

[𝑓(𝑥𝑠) + 𝑙(𝑥, 𝑥𝑠)], ∀𝑥 ∈ 𝑋 (3.4)

where 𝑥𝑠 is a sampled point and (𝑥𝑠, 𝑓(𝑥𝑠)) ∈ 𝑆, denoting with 𝑆 the set of samples
(function evaluations) considered while building 𝐵. At each iteration, the next state to
sample is given by the formula:

𝑥+ ∈ argmax𝑥∈𝑋𝐵(𝑥). (3.5)

Note that 𝐵 is lowered (refined) with each sample gathered by the robot.

3.3 Problem statement
Given an unknown function 𝑓 ∶ 𝑋 → ℝ, a global optimum must be found in the least
number of steps. Consider the maxima locations:

𝑥∗ ∈ argmax𝑥∈𝑋𝑓(𝑥) (3.6)

where 𝑥 represents a physical location in the space 𝑋 ⊂ ℝ𝑝. No previous knowledge of the
function is available to the robot and thus the function must be learnt from the samples
taken across a single trajectory. The path travelled is important due to energy and time
considerations often encountered in practical scenarios. Another constraint is that, due to
limited velocity, the robot cannot sample at arbitrarily distant positions across the state
space, being limited to neighboring ones.

The motion dynamics are described by the 𝑝-dimensional positions 𝑥 ∈ 𝑋 and system
inputs 𝑢 ∈ 𝑈 ⊂ ℝ𝑝. Most of the times 𝑝 ∈ {2, 3}. For simplicity, we consider simple
integrator dynamics with the possibility of extension to more complex dynamics. Thus,
the discrete-time dynamics are given by 𝑔 ∶ 𝑋 × 𝑈 → 𝑋:

𝑔(𝑥𝑘, 𝑢𝑘) = 𝑥𝑘 + 𝑢𝑘 = 𝑥𝑘+1 (3.7)

where 𝑘 indexes the step of the considered trajectory.

The solution we propose is inspired by DOO as it builds and refines with each sample
gathered the saw-tooth upper bound of the function. Unlike DOO, it cannot sample
arbitrarily far in the search space (recall the dynamics constraints) and thus the classical
approach of always sampling the point with the highest 𝐵-value is inappropriate. By
following it, the robot would not be using the samples gathered until the target is reached,
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possibly overcommiting to a trajectory that meanwhile became suboptimal. To address
this issue, we make the algorithm aware of its path by defining an optimal control problem
(OCP) with a different goal. We do not sample directly the highest 𝐵-value points, but
rather lower the upper bound around the optima to implicitly find 𝑥∗. Thus, we aim to
maximize the refinements of the upper bound around points of interest that either: 𝑎)
have high upper bounds and optimistically can “hide” maxima points, or 𝑏) have high
function values that can lead to a maximum. The classical learning dilemma between the
exploration and exploitation tradeoff arises here too: encouraging 𝑎) will lead to excessive
refinements in untraveled regions, less focused around high-value function points (too high
exploration), while encouraging 𝑏), the robot will overly refine areas where high function
values were sampled and visit less untraveled regions that can possibly contain maxima
(too high exploitation).

The OCP reward function defined next addresses this tradeoff. Starting with an intuition,
we consider the volume between the function upper bound and the horizontal plane (we
use the term volume generically for any 𝑝; for 𝑝 = 1 it translates to area). With each new
sample the function upper bound is lowered according to (3.4). The difference between
the old and the new volumes is called volume refinement. Note that future samples are
unknown and cannot be used to compute exactly this refinement and instead we must
rely on approximations to predict it; refer to the example in Figure 3.1 for more intuition.
Finally, we define the reward as the volume predicted to be refined by taking action 𝑢 in
state 𝑥, weighted by the average of the function value and its upper bound, both evaluated
at 𝑥:

𝜌(𝑥, 𝑢) =
̂𝑓(𝑥) + 𝐵(𝑥)

2 𝑟(𝑥, 𝑢) (3.8)

where 𝜌(𝑥, 𝑢) is the reward function, 𝐵 is the upper bound function defined in (3.4) and
𝑟(𝑥, 𝑢) represents the volume predicted to be refined by taking action 𝑢 in state 𝑥. The
refinement is computed in the following way. First, denote with 𝑆 = {(𝑥, 𝑓(𝑥))|𝑥 ∈ 𝑋}
the set of samples acquired so far. Compute next the upper bounds 𝐵1 and 𝐵2 using
(3.4) and two slightly different sets of samples: 𝐵1 with 𝑆 ∪ {(𝑥, ̂𝑓(𝑥)} and 𝐵2 with
𝑆 ∪{(𝑥, ̂𝑓(𝑥), (𝑥+, ̂𝑓(𝑥+)}, where 𝑥+ = 𝑔(𝑥, 𝑢). The volume refined is determined through
trapezoidal numerical integration over the difference 𝐵1 − 𝐵2 across the 𝑝 dimensions of
𝑋.

The terms 𝐵(𝑥) and 𝑟(𝑥, 𝑢) direct the refinements to locations with high upper bounds
where optimistically a maximum might be situated (via 𝐵(𝑥)) and where the robot has
the potential to significantly lower 𝐵 (via 𝑟(𝑥, 𝑢)).
Factor ̂𝑓(𝑥) in (3.8) tells the robot to visit states closer to those having high function
values. Due to a limited number of samples acquired along the single-run trajectory,

̂𝑓(𝑥) is in most cases a prediction (especially at the beginning of the run). We compute
this prediction by taking the function value of the closest point to 𝑥 that was already
sampled. We do this for two reasons: taking a lower quantity than ̂𝑓(𝑥) would contradict
the optimistic approach of our algorithm by overly encouraging exploitation, and taking a
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higher value, say closer to 𝐵(𝑥), would translate into an overly optimistic approach that
encourages too much the exploration. If state 𝑥 was sampled before, its corresponding
function value is directly taken.

Figure 3.1 gives an example of the reward calculation for a simple 1D case, where the
evaluation point is denoted by 𝑥𝑘 and the next point (corresponding to 𝑢𝑘 in 𝜌(𝑥𝑘, 𝑢𝑘)) is
𝑥𝑘+1. As 𝑥𝑘 was already sampled, its function value 𝑓(𝑥𝑘) is used to approximate ̂𝑓(𝑥𝑘),

̂𝑓(𝑥𝑘+1) (as 𝑥𝑘 is the closest sampled point to 𝑥𝑘+1) and 𝐵(𝑥𝑘). The area predicted to be
refined is colored in green and is of course an approximation, because one cannot guess
in advance the next function samples, but only rely on approximations to predict them.
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Figure 3.1. The sampled function is drawn with a blue line and the saw-tooth envelope represents its
upper bound. The function sample 𝑓(𝑥𝑘) (black star) is used to approximate ̂𝑓(𝑥𝑘), ̂𝑓(𝑥𝑘+1) (red star)
and determine 𝐵(𝑥𝑘). The area predicted to be refined is colored in green.

More generally, note that the ideal reward function would use true function values and
updated 𝐵-values at the next steps. However, this is impossible in practice because doing
so would require in advance knowledge of the function samples. This is why we must
resort to approximations of 𝑓 and of the refinement.

Due to the online learning character, the OCP is a time-varying problem in which 𝜌(𝑥, 𝑢)
changes with each new sample gathered as more information is available. We expect these
changes to be limited (since we only add one sample per step) and thus the solution of
one problem should offer useful insight about the next. We exploit this feature in the
algorithm from the next section.

The OCP objective is to maximize the long-term value function 𝑉 ∶ 𝑋 → ℝ. As the
horizon is unknown to the robot (there is no telling how many steps it will take to reach
the maxima), we define this value function in the infinite horizon setting:

𝑉 ℎ(𝑥) =
∞

∑
𝑘=0

𝜌(𝑥, 𝑢) (3.9)

33



3 Path-Aware Global Optimization

where ℎ ∶ 𝑋 → 𝑈 represents the control law and 𝑢 = ℎ(𝑥). This objective aims to ex-
plicitly maximize the upper bound based rewards, while the minimization of the travelled
distance until the optimum occurs as a consequence. For this we are searching for an
optimal policy, denoted by ℎ∗, such that:

𝑉 ℎ∗(𝑥) ≥ 𝑉 ℎ(𝑥), ∀𝑥, ℎ. (3.10)

Define also the optimal Q-function 𝑄∗(𝑥, 𝑢) = 𝜌(𝑥, 𝑢) + 𝑉 ℎ∗(𝑥)(𝑔(𝑥, 𝑢)), which satisfies
the Bellman equation:

𝑄∗(𝑥, 𝑢) = 𝜌(𝑥, 𝑢) + max
𝑢′

𝑄∗(𝑔(𝑥, 𝑢), 𝑢′) (3.11)

Once this equation has been solved to find 𝑄∗, the optimal policy is given by ℎ∗(𝑥) =
arg max𝑢 𝑄∗(𝑥, 𝑢).

3.4 Path-aware optimistic optimization
Algorithm 5 applies dynamic programming (DP) in an online scheme to solve the OCP
defined above. To build the upper bound and value function estimations, the robot needs
to gather informative samples during its exploration procedure. Recall that samples can
only be gathered in the current positions of the robot and are further used to approximate
the function in unsampled points when computing the rewards in (3.8).

At each step 𝑘, the robot takes a sample 𝑓(𝑥𝑘) and adds it to the sample set 𝑆. Then, 𝑚
DP updates of the following form are run:

𝑄+(𝑥, 𝑢) = 𝜌(𝑥, 𝑢) + max
𝑢′

𝑄(𝑔(𝑥, 𝑢), 𝑢′) (3.12)

which turn the Bellman equation (3.11) into an iterative update. For simplicity, the
states are discretized into a grid 𝑋𝑔𝑟𝑖𝑑, having 𝑛𝑔𝑟𝑖𝑑 equidistant points along each of
the 𝑋 dimensions. We pick states on 𝑋𝑔𝑟𝑖𝑑 and actions so that the next state given the
dynamics always falls on the grid. Actions leading the robot to the states up, down, left or
right with one grid position with respect to the current position are considered. Thus, the
DP updates (3.12) must be run only on states from 𝑋𝑔𝑟𝑖𝑑 and on the discretized actions.
Many representation schemes, including some for continuous actions, can be used to get
rid of this limitation, and they will be studied in future work.

To fully solve the OCP, the true rewards should exploit how the 𝐵-values change (lower)
with the new samples, meaning that the refinement gains at later steps would be smaller.
Not knowing in advance the evolution of 𝐵 means that 𝜌 will overestimate these gains
at future steps. This represents a key reason why 𝑚 needs to be limited. Moreover, the
OCP changes slightly as it learns online and fully converging to the solution of step-𝑘
would likely not be useful, since at step-𝑘 + 1 the OCP will be updated again.

The robot chooses next the action that maximizes the 𝑄-values:

𝑢𝑘 = arg max
𝑢

𝑄(𝑥𝑘, 𝑢), (3.13)
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applies it and measures the new state. The procedure continues until the number of steps
in the trajectory, denoted by 𝑛, is exhausted.

Algorithm 5 describes the steps presented above.

Algorithm 5 Path-Aware Optimistic Optimization (OOPA).
Input: 𝑔, 𝑛𝑔𝑟𝑖𝑑 number of steps per 𝑋 and 𝐵 grid axes, discretized actions 𝑈 , 𝑚 number

of DP sweeps, 𝑛 trajectory steps, 𝑀 Lipschitz constant
1: generate 𝑋 and 𝐵 grid, 𝑋𝑔𝑟𝑖𝑑, using 𝑛𝑔𝑟𝑖𝑑
2: initialize samples set 𝑆 ← ∅
3: initialize 𝑄0(𝑥, 𝑢) ← 0 ∀𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈
4: measure initial state 𝑥0
5: for each step 𝑘 = 0, … , 𝑛 − 1 do
6: sample 𝑓(𝑥𝑘), add pair (𝑥𝑘, 𝑓(𝑥𝑘)) to 𝑆
7: for each DP sweep 𝑚 = 0, … , 𝑚 − 1 do
8: for all states 𝑥 ∈ 𝑋𝑔𝑟𝑖𝑑, actions 𝑢 ∈ 𝑈 do
9: 𝑥+ ← 𝑔(𝑥, 𝑢)

10: find ̂𝑓(𝑥), ̂𝑓(𝑥+) and 𝐵(𝑥) using 𝑆 and (3.4)
11: 𝑆1 ← [𝑆, (𝑥, ̂𝑓(𝑥))], 𝑆2 ← [𝑆1, (𝑥+, ̂𝑓(𝑥+))]
12: compute 𝐵1(𝑥), ∀𝑥 ∈ 𝑋𝑔𝑟𝑖𝑑 using 𝑆1 and (3.4)
13: compute 𝐵2(𝑥), ∀𝑥 ∈ 𝑋𝑔𝑟𝑖𝑑 using 𝑆2 and (3.4)
14: compute 𝑟(𝑥, 𝑢) using trapezoidal integration
15: over (𝐵1 − 𝐵2) across 𝑋𝑔𝑟𝑖𝑑
16: compute 𝜌(𝑥, 𝑢) using (3.8)
17: 𝑄𝑚+1(𝑥, 𝑢) = 𝜌(𝑥, 𝑢) + max𝑢′𝑄𝑚(𝑥+, 𝑢′)
18: end for
19: end for
20: 𝑄0 = 𝑄𝑚
21: 𝑢𝑘 = argmax𝑢∈𝑈𝑄𝑚(𝑥𝑘, 𝑢)
22: apply action 𝑢𝑘, measure next state 𝑥𝑘+1
23: end for

We call the algorithm Path-Aware Optimistic Optimization (OOPA). It has the following
parameters that need to be tuned: 𝑚 representing the number of DP updates, the Lips-
chitz constant 𝑀 , and the discretization factor 𝑛𝑔𝑟𝑖𝑑 that dictates the number of points
taken across each dimension of 𝑋. The first parameter, 𝑚, impacts the propagation of the
rewards across the state grid considered. Taking a too high 𝑚 will not only lead to high
computation times that are not viable in practice, but also overly extrapolate the rewards
that are mostly overestimations of their true quantities. Therefore, we recommend taking
𝑚 ≤ 5. The Lipschitz constant is generally unknown and needs to be tuned empirically.
Taking 𝑀 much lower than its true value will create an upper bound that no longer sat-
isfies the inequality 𝑓(𝑥) < 𝐵(𝑥), and thus the algorithm could break. A good approach
is to take a rather high 𝑀 and lower it sequentially based on the feedback provided by
the experiments. Finally, the grid should a priori be taken as large as feasible given the
computational resources; we investigate the effect of the grid size in the next section.
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3.5 Experiments and discussion
At first, we define a standard setup in which we aim to study the new method and
compare the OOPA algorithm against two baselines: Classical DOO (CDOO) that uses
the saw-tooth approach to build the upper bound and commits to sampling always the
highest 𝐵-value point; and Gradient Ascent that creates an approximation plane using
Local Linear Regression [35] on the neighboring samples and follows the gradient of this
plane to quickly converge to a local maximum.

3.5.1 Influence of tuning parameters

A 21x21 interpolation grid is taken across a state space of length 4x4 m. The function
to optimize is composed of a sum of three radial-basis (RBF) functions with different co-
efficients: width 𝑏𝑖 ∈ {[1.3; 1.3], [0.6; 0.6], [1; 1]]}, height ℎ𝑖 ∈ {[148.75, 255.0, 212.5]} and
centers 𝑐𝑖 ∈ {[0.75; 1.5], [2.75; 3.5], [3.25; 0.75]} (see Figure 3.7 for a contour plot). So the
global optimum is 𝑓∗ = 255 situated in [2.75; 3.5]. The corresponding Lipschitz constant
is approximated starting from the Mean Value Theorem and then tuned experimentally
to ensure that it produces close to true upper bounds. Thus, the Lipschitz constant was
set to 𝑀 = 364.54.

The first parameter to be tuned is 𝑚, the number of DP updates at each step taken by the
robot. On the setup defined above, we run the algorithm for 𝑚 ∈ {1, 2, 3, 4, 5} and study
the maximum 𝑓-value sampled: 𝑓 = max𝑥𝑠

(𝑓(𝑥𝑠)), and the minimum distance until
𝑥∗: Δ𝑥 = min𝑥𝑠

(||𝑥∗ − 𝑥𝑠||), where 𝑥𝑠 represents a sample point along the trajectory
performed so far. Another metric of interest is the minimum difference between the
optimum and the values of 𝑓 sampled so far: Δ𝑓 = min𝑥𝑠

(𝑓∗ − 𝑓(𝑥𝑠)), with 𝑥𝑠 having
the same meaning as above. The number of trajectory steps for each experiment is set
to 𝑛 = 125, equivalent to 25 m travel distance. The robot starting position is set in the
middle of the grid, 𝑥0 = [2; 2].
Figure 3.2 shows that odd values of 𝑚 perform better in finding the maximum position
with higher accuracy, while even values of 𝑚 are suboptimal, converging to the second
highest RBF. The best choice seems to be 𝑚 = 3, which gets close to the maximum faster
and scores 20% and 30% less distance to 𝑥∗ compared to the cases of 𝑚 = 1 and 𝑚 = 5
(8.4 m compared to 10.6 m and 12.4 m), respectively. The intuition is that rewards based
on the volume refinements need to be propagated across the state space, however not too
much, since they are mostly predictions (approximations) and in most cases their values
are overestimated, especially at the beginning of the experiment. Choosing 𝑚 = 3 gives
balanced results in terms of both exploration and exploitation.

Figure 3.3 (left) shows the refined upper bound of the sampled function built using (3.4)
and the 𝑛 = 125 samples acquired. The robot trajectory in Figure 3.3 (right) shows more
steps being spent around the highest RBF (centered in [2.75; 3.5]) and less around the
ones with lower values (centered in [0.75; 1.5], [3.25; 0.75]). This is expected, since the
rewards take into account not only the upper bound, but also the function values.

Next, we will study the impact of the grid size on the behavior of the algorithm. For this,
the state space will be split into grids of size {212, 262, 312, 362, 412} and the behavior
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Figure 3.2. Illustration of the maximum value sampled so far (left) and the minimum distance to the
maximum center 𝑥∗ (right), denoted with Δ𝑥; for 𝑚 ∈ {1, 2, 3, 4, 5}. The legend on the right shows the
minimum distance between the samples of 𝑓 and its maximum value 𝑓∗, denoted by Δ𝑓.

Figure 3.3. The sampled function is bounded from above by the refined 𝐵 function (left), both evaluated
across the same grid. The sampling trajectory of the robot, drawn with blue ’x’ and starting from the red
’x’, is displayed on the left. The refinements are geared towards higher function values, but not overly
committed in those areas. This highlights a good exploration-exploitation tradeoff obtained for 𝑚 = 3.

evaluated using the metrics from above. We keep the algorithm tuning and setup un-
changed, with the exception of grid discretization and trajectory length set now to 75m.
This length is equal to the product between the grid step size and the samples budget 𝑛
for each experiment respectively.
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Figure 3.4. Smaller grid step sizes generally lead to better precision when searching for the optimum. Δ𝑓
is displayed in the legend on the left, while the legend on the right displays Δ𝑥.

Except a “lucky” case (212), finer grids find the optimum with higher accuracy. Note that
on all grids 𝑥∗ is found with a precision of 1 grid step size, as 𝑚 = 3 was kept constant
during this experiment.

20 25 30 35 40 45

grid points/axis

0

5

10

15

20

25

e
x
e

c
 t

im
e

/s
te

p
 [

s
/s

te
p

]

Figure 3.5. Time complexity has a quadratic growth with respect to the grid size.

Time complexity has a quadratic growth with respect to the grid of points. This can be
observed in Figure 3.5 that shows the average execution time per step for each studied
grid.

Since in practice the Lipschitz constant is generally unknown, it is instructive to check
the robustness of the algorithm in the event of overestimation or underestimation of
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𝑀 . Another goal is to provide a way of choosing 𝑀 , as in practical cases comput-
ing the Lipschitz constant analytically is often impossible, and 𝑀 must instead be em-
pirically tuned. We run the algorithm on the initial setup taking 𝑀 ′ = 𝜆 ⋅ 𝑀 , with
𝜆 ∈ {0.2; 0.4; 0.6; 0.8; 1; 1.25; 1.5; 2; 2.5; 3}.
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Figure 3.6. Robustness to underestimation (left) and to overestimation (right) of the Lipschitz constant.
Taking 𝑀 less than half of its initial approximation leads to finding 𝑥∗ late or even breaks the algorithm.
Taking 𝑀 more than twice of this approximation finds at worst later 𝑥∗.

Figure 3.6 shows that taking 𝑀 lower that a half of its initial approximation can lead to
finding the optimum late or even break the algorithm. On the other hand, overestimating
the Lipschitz constant is a safer choice when its value is not (precisely) known. In this
experiment, higher values of 𝑀 find 𝑥∗ at worst later and do not break the algorithm. A
possible reason is that even though the volume refinements are weighted by the mean of
the sampled function and its upper bound value, the latter has a greater impact due to
its generally higher value. Decreasing 𝑀 too much will create an upper bound 𝐵 with
much lower values compared to the true ones. So, as a rule of thumb, one should generally
choose 𝑀 high and decrease its value based on experiments.

3.5.2 Comparison to baselines

The learning-based algorithm is next compared to two different baselines using the same
setup as above. The first baseline is represented by a classical DOO (CDOO) algorithm
that, similarly to OOPA, applies the saw-tooth approach (3.4) to refine the function
envelope with each sample taken. However, it fully commits to visit the maximum-𝐵
point (3.5) and thus changes its trajectory only once this point was reached. CDOO is
not aware of the information gathered through the samples performed along the trajectory
to the next target point.

The second baseline is the Gradient Ascent. It applies Local Linear Regression on the
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closest 𝑁 neighbors to the current position to create a local approximation plane of the
sampled function. This plane is differentiated and the gradient’s direction that results is
followed by the robot with maximum velocity. This method has the natural limitation of
converging only to local maximum points, however at faster rates.

To have a fair comparison, a set of 15 equidistant starting positions placed along the lines
drawn by the 3 RBF centers (recall the initial setup) is considered. To give enough time
to the algorithms to find the maximum, we will set the number of steps per trajectory to
𝑛 = 250 (50 m travel distance). In OOPA the robot will move with a fixed step of 0.2 m
(equivalent to the step size of the 212 grid), while CDOO and Gradient Ascent can change
their step in the interval [0; 0.2] m. For the gradient-based method 𝑁 = 4 (at least 3 is
required to build up the approximation plane). We display in Figure 3.7 the result of the
experiments.
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Figure 3.7. Results of the OOPA, CDOO and Gradient Ascent methods. The first entry of each text
corresponds to OOPA, the second to CDOO and the third to Gradient Ascent. Characters ’y,n’ show if
the maximum was found with accuracy of 1 grid step size, 𝛿 = 0.2 m. When this happens, the travelling
distance to 𝑥∗ is displayed alongside, ’-’ otherwise. The bold ’x’ represent the starting positions.

Excepting a few outliers, the DOO-based methods find the maximum position at the
distance of 𝛿 = 0.2 m (1 grid step size accuracy). When 𝑥∗ is found, OOPA scores 37.55%
less distance on average compared to CDOO. Gradient Ascent finds the maximum in only
a fifth of the runs, mainly when it starts close to the center of the highest RBF. When
this happens, the gradient-based method tends to find 𝑥∗ faster compared to OOPA or
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CDOO. These behaviors are expected due to the local nature of the gradient and its
straightforward choice of the heading direction.

3.5.3 Behavior with a non-differentiable function

For the following experiments we keep the 21x21 interpolation grid across the 4x4 m search
space from above. However, we replace the RBFs with rectangular pyramidal functions,
with the goal of studying the algorithm behavior in the case of non-differentiable functions.
The parameters of the pyramidal functions are: side lengths 𝑏𝑖 ∈ {[2.6; 2.6], [1.2; 1.2],
[2; 2]}, heights ℎ𝑖 ∈ {148.75, 255.0, 212.5}, rotation angles 𝑎𝑖 ∈ {𝜋/4, 2𝜋/5, 𝜋/6} and
centers 𝑐𝑖 ∈ {[0.75; 1.5], [2.75; 3.5], [3.25; 0.75]} (see Figure 3.8 for a representation of a
pyramidal function and Figure 3.10 for a contour plot). The global optimum remains
𝑓∗ = 255, situated in [2.75; 3.5]. The corresponding Lipschitz constant is approximated
experimentally to 𝑀 = 425, a value that produces close-to-true upper bounds.

Figure 3.8. Representation of the parameters for a pyramidal function. Side lengths 𝑏𝑖, height ℎ𝑖 and
center 𝑐𝑖 are shown on the left plot. On the right figure, the angle 𝑎𝑖 rotates clockwise the pyramid basis
around its center starting from the parallel to the x axis passing through 𝑐𝑖.

We redo first the experiment of underestimation/overestimation of the Lipschitz constant
using the pyramidal functions setting defined above. For this we set 𝑀 ′ = 𝜆 ⋅ 𝑀 , with
𝜆 ∈ {0.2; 0.4; 0.6; 0.8; 1; 1.25; 1.5; 2; 2.5; 3}. Figure 3.9 shows that higher values of 𝑀
typically find 𝑥∗ with better accuracy compared to low values of the same constant.
Again, taking a rather high 𝑀 and decreasing it empirically represents a safer choice, as
it gives better overall results without breaking the upper-bound properties used in the
algorithm.

The comparison of OOPA to CDOO and Gradient Ascent baselines is performed next,
keeping the same settings as in the RBFs case (excepting the sampled function). Note that
the Gradient Ascent might fail due to the non-differentiable (pyramidal-based) function
that is sampled, thus applying it is mostly an empirical attempt.

Figure 3.10 shows that the DOO-based algorithms nearly always find 𝑥∗ with accuracy of
𝛿 = 0.2 m (excepting a few outliers). When 𝑥∗ is found, OOPA scores roughly 39.3% less
travelling distance on average compared to CDOO. The Gradient Ascent converges to the
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Figure 3.9. Robustness to underestimation (left) and to overestimation (right) of the Lipschitz constant
when sampling pyramidal based functions. Low values of 𝑀 perform poorer while searching for 𝑥∗

(sometimes even breaking the algorithm) compered to high values of the same constant.

global maxima in only 3 out of the 15 runs, however, it does so at faster rates. Again,
results are similar to the case of the RBF-based function.

3.6 Conclusion
We considered the problem of finding a global optimum of a function defined over some
physical space, by sampling it with a mobile robot. A method based on dynamic pro-
gramming and optimistic optimization was defined to quickly reduce the upper bounds
around optima and implicitly find an approximate location of it.

In the future, the method will be extended to find multiple optima (e.g. local maxima that
become points of interest over a preset threshold) and add a quantity collection objective,
in which the robot tries to transfer as much data from the transmitters, map as much
litter or forest density, etc. We will also try to provide guarantees on convergence to the
optima and give an estimation of the number of steps until these optima are found. Some
possible extensions to the current method are improving the algorithm so that it works
for stochastic objective functions or when no Lipschitz assumptions are made.

42



3 Path-Aware Global Optimization

0.5 1 1.5 2 2.5 3 3.5 4

x

0

0.5

1

1.5

2

2.5

3

3.5

4

y

36.2,y/48.6,y/1.1,n

40.4,y/41.6,y/2.0,n

10.4,y/27.6,y/3.7,n

10.8,y/42.6,y/13.6,n

44.4,y/42.4,y/2.1,y

0.0,y/0.0,y/0.0,y

--n/22.2,y/1.9,y

7.6,y/18.6,y/3.3,n

6.2,y/--n/2.9,n

28.6,y/27.8,y/1.9,n

34.2,y/38.2,y/1.1,n
32.6,y/49.0,y/1.6,n

38.8,y/42.2,y/1.8,n
3.0,y/45.6,y/3.3,n

3.6,y/42.6,y/1.8,n

Figure 3.10. Results of the OOPA, CDOO and Gradient Ascent methods using the pyramidal functions
setting. When 𝑥∗ is found, OOPA scores roughly 39% less travelling distance on average compared to
CDOO. The Gradient Ascent converges to the global maxima in only 3 out of the 15 runs, however at
faster rates. Again, results are similar to the case of the RBF-based function.
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4 Conclusions and future work
We developed algorithms for mobile robots to find the optima of a function defined over an
operating area, while possibly transferring data over a wireless communication protocol
if the optima correspond to antenna transmitters (as in Chapter 2). Optima are learned
online from samples during a single trajectory run, and the trajectory length is especially
important due to energy and time constraints.

The first task, Multiple Antenna Search, aims to find the antennas position and gather
wirelessly the data buffers of the antennas in the least amount of time. We solved this
problem using well-known algorithms adapted to our problem: Gradient Ascent, the
Travelling Salesman Problem and the Lawnmower method. All these algorithms were
extensively tested on deterministic and stochastic transmission rates, all antenna positions
being generated uniformly randomly across the searching space. Tests showed that the
Gradient Ascent works well when there is no noise on the communication channel, its
performance being closer to the TSP’s compared to the one of the Lawnmower trajectory.
However, the Gradient Ascent performs poorly or even breaks when the transmission
signal is drowned by noise. This is expected as the direction of the gradient followed by
the robot is highly influenced by the noise. Therefore, advanced path planning algorithms
that are more resilient to fluctuations on the communication channel need to be further
developed.

To solve the second problem, Path-Aware Global Optimization, whose objective is to
find as quickly as possible a global maximum of the function, we developed the Path-
Aware Optimistic Optimization (OOPA). This novel optimal control algorithm combines
dynamic programming to find the decision of direction taking of the agent at each step
(defined as an optimal control problem) and optimistic optimization to build and refine
the function’s upper bound with each new sample, to quickly focus the search around the
optima. Note that unlike the Multiple Antenna Search, this problem does not include any
transmission objectives. OOPA was tested against the classical DOO (CDOO) and Gra-
dient Ascent methods in a deterministic setting using different types of functions (radial
basis and pyramidal functions) starting from different initial positions. As results show,
OOPA proved to outperform CDOO by scoring less distance on average until reaching the
optima. Gradient Ascent, however, rarely converges to the function (global) optima due
to its local optimization properties, but the convergence happens at faster rates compared
to the DOO-based methods.

In future work we will consider more general robot dynamics than simple integrators,
e.g. by adding motion related states, additional velocities etc., and then demonstrate the
methods on real robots such as aerial drones or ground robots. For this, the stochastic
case needs to be studied in depth to find a way to mitigate the noise present e.g. on
the communication channel. Other objectives are to provide near-optimality guarantees,
bring algorithmic improvements to handle continuous states and actions, and eliminate
the need to know the Lipschitz constant. We will also add a collection objective to
maximize the integral of the sampled function over the robot trajectory, e.g. map as much
forest density or air pollutants as possible, maximize the data transfers between the robot
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and the wireless antennas or the collection of ocean litter, etc. Finally, the methods
will be extended to the multiagent framework, making them more applicable in real-life
multi-robot scenarios.

All in all, the present work represents a strong foundation for future research topics
that will be focusing not only on algorithms development, but also on their practical
implementation on mobile robots.
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