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The need for rehabilitation

By Blausen
Medical
Communications,
Inc.

• Strokes are a leading cause of disability
[Glo]

• Parts of the brain stop functioning
• Difficulty to move or feel
• Lengthy rehabilitation process
• Impact on quality of life of patients
• Impact on quality of life of
physiotherapists
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Rehabilitation::Traditional rehabilitation
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Robotic rehabilitation::Exoskeletons

Harmony: Upper-limb Exoskeleton for Stroke Rehabilitation
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Robotic rehabilitation::Exoskeletons

• Very complex mechanics

• Long development times
• Very costly
• Sizing issues
• Long attachment/detachment times (dead time)
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Robotic rehabilitation::End-effectors

InMotion Robot
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• Very specific types of motion
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Robotic rehabilitation::Collaborative robotic arms

• Lower
development
costs

• Much faster
attachment

• Patient specific
• Safe

Disadvantage
More complex control is necessary
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Robotic rehabilitation

• Rehabilitation aims at improving quality of life after
trauma/desease

• Current trend is to mimic ’normal’ motion [Díaz et al.]
• Without significant results [Kwakkel et al.]
• Newest paradigm: Patient chooses trajectories,
physiotherapist assists [Hidler and Sainburg; Lum et al.]

• Goal of BETER REHAB project: assist patient along intented
trajectory

• Goal of TRUE REHAB project: patient along muscle
optimized trajectory [Caiozzo et al.]

9



Robotic rehabilitation

• Rehabilitation aims at improving quality of life after
trauma/desease

• Current trend is to mimic ’normal’ motion [Díaz et al.]

• Without significant results [Kwakkel et al.]
• Newest paradigm: Patient chooses trajectories,
physiotherapist assists [Hidler and Sainburg; Lum et al.]

• Goal of BETER REHAB project: assist patient along intented
trajectory

• Goal of TRUE REHAB project: patient along muscle
optimized trajectory [Caiozzo et al.]

9



Robotic rehabilitation

• Rehabilitation aims at improving quality of life after
trauma/desease

• Current trend is to mimic ’normal’ motion [Díaz et al.]
• Without significant results [Kwakkel et al.]

• Newest paradigm: Patient chooses trajectories,
physiotherapist assists [Hidler and Sainburg; Lum et al.]

• Goal of BETER REHAB project: assist patient along intented
trajectory

• Goal of TRUE REHAB project: patient along muscle
optimized trajectory [Caiozzo et al.]

9



Robotic rehabilitation

• Rehabilitation aims at improving quality of life after
trauma/desease

• Current trend is to mimic ’normal’ motion [Díaz et al.]
• Without significant results [Kwakkel et al.]
• Newest paradigm: Patient chooses trajectories,
physiotherapist assists [Hidler and Sainburg; Lum et al.]

• Goal of BETER REHAB project: assist patient along intented
trajectory

• Goal of TRUE REHAB project: patient along muscle
optimized trajectory [Caiozzo et al.]

9



Robotic rehabilitation

• Rehabilitation aims at improving quality of life after
trauma/desease

• Current trend is to mimic ’normal’ motion [Díaz et al.]
• Without significant results [Kwakkel et al.]
• Newest paradigm: Patient chooses trajectories,
physiotherapist assists [Hidler and Sainburg; Lum et al.]

• Goal of BETER REHAB project: assist patient along intented
trajectory

• Goal of TRUE REHAB project: patient along muscle
optimized trajectory [Caiozzo et al.]

9



Robotic rehabilitation

• Rehabilitation aims at improving quality of life after
trauma/desease

• Current trend is to mimic ’normal’ motion [Díaz et al.]
• Without significant results [Kwakkel et al.]
• Newest paradigm: Patient chooses trajectories,
physiotherapist assists [Hidler and Sainburg; Lum et al.]

• Goal of BETER REHAB project: assist patient along intented
trajectory

• Goal of TRUE REHAB project: patient along muscle
optimized trajectory [Caiozzo et al.]

9



Talk Overview

• Intention of motion
• Muscle optimized trajectories
• Muscle force quantification
• Path planning
• Robot control
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Intention of motion



Intention of motion::How?

EMG can help us predict the intention of a person
The robot can then assist in the right direction by the desired
amount
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Intention of motion::Measurements
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Intention of motion::Measurements

• 5 volunteers (4 male, 1 female)

• 3 types of motion
(Arm raise, Arm cross, Elbow
flexion)

• 10 repetitions
• 3 trials
• LSTM network
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Intention of motion::Prediction

Prediction is real-time!
Prior measurements are necessary (person specific model)
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Intention of motion::Prediction
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Intention of motion::Generic Prediction

Leave-one-out training
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Intention of motion::Experimental validation
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Intention of motion::Experimental validation

Quantifying the human-robot force interaction
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Intention of motion::Experimental validation

Comparing angle between intention and force

Passive motion Active motion -> Assistance!
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Muscle forces optimization



Rehabilitation::Muscle forces optimization

Operation principle
Calculate trajectories for maximizing/minimizing force
production of specific muscle forces

Then provide assistance along the path

• Increase effeciency of rehabilitation
• Train specific muscles
• Minimize load on sensitive areas (e.g. surgery)
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Rehabilitation::Muscle forces optimization
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Muscle forces::Estimation

Muscle activation (EMG) and force relationship is not known

Several parameters that we should identify [Thelen]

• Maximum isometric force
• Tendon slack length
• Pennation angle
• Fiber length
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Muscle parameters::Identification

Musculoskeletal modelling [Blana et al.]

Optimization methods [Falisse et al.]
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Muscle parameters::Identification

Work in progress
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Path planning



Path planning::Record hand movements

• Record hand motion

• Solve inverse kinematics
• Replay movement with the robot
• Registration of the camera on the robot
frame!

The feed of the camera together with its TF w.r.t. the robot
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Path planning::Replay movements

Workflow in images: camera feed (left), body tracker
integration with the robot (middle), replay of hand path (right)

26



Path planning

Muscle optimization path planning expected to start work
during summer 2021
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Robot control



Rehabilitation::Muscle forces optimization

Hybrid position-force control
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Rehabilitation::Muscle forces optimization

Hybrid position-force control
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Control::Robot model
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Control::Robot model

Nonlinear model (Euler Lagrange)

D(q)q̈+ C(q, q̇)q̇+ F(q̇) + G(q) = τ (1)

τ – control torque, q – joint position
D- inertia matrix, C – Coriolis and centripetal forces, F –friction
forces, G- gravitational forces

Linearized model (equilibrium point 0)

ẋ = Ax + Bu (2)
y = Cx (3)

x = [q q̇]T , y = q, u = τ

30



Control::Linear control

Control law
u = −Kx + Ki

∫ t

0
(r − y)dt (4)

r is de reference signal

K is designed through pole placemenet or via LQR
(optimisation) in order to ensure a stable and fast enough
response

Ki can be designed empirically or through optimisation based
on specified the settling time and overshoot
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Control::Nonlinear control

Computer torque method:
Inner feedback loop (dynamic linearization)

τ = D(q)(r̈ − u) + C(q, q̇)q̇+ F(q̇) + G(q) (5)

Outer feedback loop (stability and tracking)

u = −Kxe + Kie
∫ t

0
e dt (6)

xe = [e ė]T , e = r − y.

32



Control::Nonlinear control

Computer torque with sliding mode (robust approach):

We define:
-the sliding surface s = Λe+ ė, where Λ = diag[λ1, λ2, ..., λn]
-the variable q̇r = Λe+ ṙ
-the vector function sgn(s) = [sgn(s1) sgn(s2) ..., sgn(sn)]T with
sgn(si) = +1 if si > 0, or sgn(si) = −1 if si < 0.

The control law:

τ = Mq̈r + Cq̇r + G+ Ksgn(s) (7)

with K = diag[k1 k2 ...kn]

Λ and K are the design parameters
33



Control::Practical problems

• No torque control available on the UR5

• Black box controller
• Joint velocity controllers (PID)
• Safety parameters

Alternatives
Sliding mode controller can be implemented for the outer
postion feedback loop (cartesian coordinates) - based on the
linearised closed loop model from vco to xm
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