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Abstract—Time-of-Flight (ToF) cameras are becoming popular
in a wide span of areas ranging from consumer-grade electronic
devices to safety-critical industrial robots. This is mainly due to
their high frame rate, relative good precision and the lowered
costs. Although ToF cameras are in continuous development,
especially pulse-based variants, they still face different problems,
including spurious noise over the points or multipath inference
(MPI). The latter can cause deformed surfaces to manifest them-
selves on curved surfaces instead of planar ones, making standard
spatial data preprocessing, such as plane extraction, difficult. In
this paper, we focus on the MPI reduction problem using Feature
Pyramid Networks (FPN) which allow the mitigation of this type
of artifact for pulse-based ToF cameras. With our end-to-end
network, we managed to attenuate the MPI effect on planar
surfaces using a learning-based method on real ToF data. Both
the custom dataset used for our model training as well as the
code is available on the author’s Github homepage.

Index Terms—CNN, depth image, robotics

I. INTRODUCTION

Due to the increased popularity of the Time-of-Flight (ToF)
cameras in the past decade, the adaption of these devices got
as a de-facto standard for the spatial perception in the robotics
community. This is due to their relative low cost, high frame-
rate and good accuracy. Although they perform well in most
environments, some perturbing effects can appear, especially
for transparent or translucent objects. For the latter ones, the
so-called multi-path inference(MPI), i.e. the reflection of the
light from multiple sources towards the receiver can affect the
quality of the depth estimation. An illustrative example of the
effect of MPI on ToF imaging is shown in Figure 1.

For the ToF cameras two different functional approaches
exists: the Amplitude Modulated Continuous-Wave Time-of-
Flight (AMCW-ToF) and the Pulse-Based Time-of-Flight (PB-
ToF) ones [17]. The latter are attractive variants in robotics and
outdoor perception [19], as they are less affected by external
weather conditions [20].

The pulse-based ToF cameras on the other hand suffer from
the multi-path interference problem, i.e. the multiple reflection
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Fig. 1. ToF imaging principle and the MPI effect

of the emitted ray due to different refractions as it can be seen
in Figure 1. Although with the classical numerical integration
techniques, the effect of these perturbations can be reduced,
they still affect the quality of the ToF depth imaging [5].
Recently, with the latest deep learning approaches, end-to-
end solutions are proposed for specific situations in [2], [8],
[18] or by implementing a confidence estimator that identifies
perturbed measurements, through a Normalized Convolution
Neural Network [4] for MPI reduction. Some approaches focus
on synthetic data [1] which used a Generative Adversarial
Network, but most of these require a huge amount of training
data. That is why in many works from the main literature, such
as [8], [13], [9], [2], they are either using synthetic images in
order to train a neural network, thus achieving good results
on synthetic images, but based on these images they lack
generalization on real data, or they are collecting ground truth
data using other expensive high precision reference sensors as
in [9], [18].

In our work we propose an efficient end-to-end deep learn-
ing approach for the MPI reduction on planar surfaces. We
focus on these larger segments in a ToF image as the extraction
of these planes stands on the bases for a number of prepro-
cessing tasks in robotics perception applications [3], [6], [11],
[19]. Our solution makes use of a multistep planar estimation
with classical sample consensus-based approach, which is used978-1-6654-7933-2/22/$31.00 ©2022 IEEE



for the training of a feature-pyramid network (FPN) based
architecture. The main intuition behind the adoption of this
architecture, is the multi-scale estimation capability required
for our planar extraction.

The structure of the paper contains, in addition to the intro-
duction, the related work, focusing on existing approaches for
both classical and learning-based variants. In the next section
the details regarding the proposed solution are highlighted, and
finally the evaluation of the method is discussed for various
datasets.

II. RELATED WORK

Although many attempts to handle MPI are described in
state of the art, none of them tries to focus explicitly on
the planar region correction using Convolutional Neural Net-
works (CNNs). A part of them relies on the compensation of
continuous wave based ToF cameras using the basic signal
propagation equations [7], [10] where a continuous wave
modulation ToF camera is used. Other approaches are using
neural networks to approximate or remove noise from depth
images [18], [13], [9], [2], [4], [1], [8].

In [7], using the signal propagation equations of continuous-
wave cameras, a Multi-Path Interference compensation method
was proposed, where for each pixel of the depth image, the
MPI effect of all the other pixels was subtracted, thus reducing
the point cloud distortion. Although this method had good
results, it took 10 minutes to calculate per image. In [10]
a similar approach is taken, where the authors use signal
propagation equations to describe a radiometric model for an
MPI iterative compensation algorithm. An MPI free depth map
is estimated and taken through the radiometric model where
MPI distortion is applied in order to obtain a similar depth
map along with the depth map obtained from the sensor, thus
when these two depth maps are similar their solution can be
considered as an accurate, MPI free, depth map. This solution
also claims to have good results, but it still takes a few minutes
to compute an accurate depth map, which is not ideal.

In the approach tackled in [18], the authors made their
own dataset by mounting a ToF camera on a robotic arm and
with a high precision light sensor that was able to measure a
ground truth for the ToF camera. By doing so, they trained two
networks: one that maps the measured depth to the real depth
and one that learns to detect the objects’ boundaries because
the MPI effect can also appear near the edges of the objects.
Although this approach was good, the data set was limited in
the robotic arm setup.

Another approach such as [13], is using a synthetic and real
dataset in order to train a Convolutional Autoencoder (CAE).
They used the real dataset in order to train the encoder, and the
synthetic dataset was used to train the decoder of the network,
thus obtaining an auto-encoder capable of encoding noisy real
images and decoding them into an unchanged depth map, but
without the noise, as learned from the synthetic dataset. In
[9] they use classical machine learning tools such as SVM for
capturing different ToF imaging disturbances such as external
light, object reflectance and color. The main idea found in

[2], is that they worked with a multi-frequency ToF camera.
For estimating the MPI, they used a CNN made of two main
parts: a coarse subnetwork and a fine one. They also used
ToF data at 20, 50 and 60 MHz frequencies for training. The
coarse network takes as input five different input channels,
and the fine network the five channels plus the output of the
coarse network.The estimated multipath error is then directly
subtracted from the ToF depth map, thus resulting in a depth
map without multipath distortion, but with other zero-mean
error sources. The resulting map is filtered with a 3x3 median
filter (removing depth outliers), and a bilateral filter is applied
to reduce noise, while preserving edges. They also created a
small real dataset used in combination with other synthetic
images.

In [4], they proposed a small network with 670K parameters
that performs as good as other approaches with millions
of parameters. Their idea is based on using a Normalized
Convolution Neural Network which is basically taking from
the input image only the pixels that have a certain confidence
and reconstructing the image using only the pixels with higher
certainty. But for NCNN to work, a mask needs to be applied
on the input, and in the classical NCNNs it is a binary input
confidence mask that considers as a one all the valid input
points and zero otherwise, but this approach can lead to
artifacts in the output of the CNN. Their solution is to use
another network to estimate the input confidence. The output
of this NN is fed to an NCNN that outputs a prediction and a
confidence estimation map, and those along with the ground
truth are fed to the loss function.

Another approach taken in [8] was to, also, create a two
module deep neural network to correct all the artifacts at
the same time. Their first module is a network that is able
to attenuate the artifacts caused by objects in motion and
second module is a network which tackles the problem of MPI
and phase wrapping perturbations. One of the most important
things to mention from their work is that they created the
FLAT dataset, a very large synthetic dataset made from 2000
Time-of-Flight measurements which includes all these types
of artifacts. They also created a network that simulates their
used camera hardware (Kinect 2).

III. PLANAR MPI REDUCTION

A. Main idea

Due to complexity of this problem, we tackle the MPI
problem in planar regions found in depth images. While most
of the methods explained in the previous section are trying
to solve this problem only in the 2D space of a depth image,
these artifacts are most visible in the 3D space, that is why we
are making use of the camera intrinsic parameters to transform
the depth image into a point cloud, during the training phase
of an FPN based model and consider a 3D metric.

The pseudo-code of the proposed method for training the
FPN model is presented below:



Algorithm 1 Planar correction algorithm
depth images = get depth from ToF camera()
for depth image in depth images do

pcd = depth 2 pcd(depth image)
th = 1.7
angle = 20.0
loose inliers, loose coeff = Plane(pcd, th, angle)
th = 1.3
angle = 15.0
tight inliers, tight coeff = Plane(pcd, th, angle)
ideal plane = points 2 plane(loose inliers, tight coeff)
pcd -= loose inliers
rectified pcd = pcd + ideal plane
gt image = pcd 2 depth(rectified pcd)

end for
for depth image, gt image do

fpn model = training(depth image, gt image)
end for

Fig. 2. Proposed FPN based training setup

B. Proposed network architecture

The input size of this network can be arbitrary (depending
on the internal parameters of the ToF camera) and the output
results in a proportionally sized feature map with the input
image using a fully convolutional approach. The approach is
generic in the sense that for the convolutional architecture
custom variants can be adopted [14] such as depth or IR
images. The construction of these pyramids involves a bottom-
up and top-down path with lateral connections [12]. An
intuitive representation for the multiscale architecture for the
ToF MPI correction can be seen in Figure 2.

As a first step in using this architecture, we load the dataset
composed of a set of three-channel images, every channel con-
taining the raw depth image, and the corresponding ground-
truth images with the rectified plane. After data loading, we
normalize the images in the [0-1] range, to achieve a robust
computation in the training process. In the next step, we

Fig. 3. Network training stages

create a loss function that can minimize the error between
the predicted image and the ground truth image. Because our
key information about the MPI artifacts is present in the 3D
space, we transform the predicted image and the ground truth
image in point clouds and only then we compute our loss
function, trying to minimize the difference between the two
point clouds. A more schematic representation of these steps
can be seen in Figure 3.

C. Dataset generation

Fig. 4. Ground truth creation flowchart

In order to implement a neural network which is able to
learn to correct these artifacts, we created a dataset with raw
depth images provided by the camera, with MPI affected



ground floor plane, and the corresponding ground truth for
each of these images.

We created the ground truth images by first transforming
our 2D images into point clouds, using the camera intrinsic
parameters. After this transformation, the artifacts created by
the MPI are more relevant in the 3D space. The targeted
artifacts consist of groups of points that are not in the same
plane, as can be seen in Figure 4. Than we apply a two-stage
sample consensus based planar extraction in order to get a
close-to-real planar patch estimation.

For the Random Sample Consensus (RANSAC) methods
we adopted ready-to-use library solutions from PCL [16] and
Open3D [21]. We constrained the RANSAC segmentation
algorithm to identify only those points which belong to the
plane that is perpendicular on the Oy axis (i.e. the ground floor
plane, in our case). This algorithm has a set of parameters,
detailed in pseudocode from section 1, which can be adjusted
to fit the points in a plane. By adjusting only these parameters
of the algorithm, we are not being able to select all the points
which belong to the ground floor, due to distorting artifacts.
That is why we propose a two step algorithm in order to find
the best approximation of the ground floor plane.

By doing so, we obtain all the points that belong to the
ground floor which we project on the plane with coefficients
obtained in the first iteration of the RANSAC segmentation
algorithm, thus obtaining a rectified plane in our point cloud.
After we obtain this plane, all we need to do is project this
point cloud back into the 2D space, in a depth image. A
more illustrative representation of this algorithm can be seen
in Figure 5.

Fig. 5. Steps for creating ground truth data

With the available ground truth planar patches, we can train
our model to estimate these artifacts at a run time that is better

than the whole algorithm proposed in Figure 5, allowing us to
have a more efficient MPI planar reduction method.

D. Model training

Figure 3 shows a top view of the required stages of
our network training phase. The loss function between the
prediction and the ground truth images is computed in the
3D space, thus we use the following equations, empirically
determined, in order to minimize the distance between the
points and to make full use of the spatial coordinates of the
points within the point clouds:
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where:
• xP , yP , zP are the coordinates of point P of the ground

truth point cloud
• x∗

P , y
∗
P , z

∗
P are the coordinates of point P ∗ of the pre-

dicted point cloud
• n is the total number of ground truth points.

By merging the loss functions defined in equations 1, 2, 3 and
4 we can accurately state the final form of our loss function:

loss = s · lossRMSE · |3− elossX − elossY − elossZ | (5)

where:
• s is a hyperparameter used to speed up the training time,

s being 100000 in our case.
Both the training and evaluation are done using the Pytorch

library v1.7.1 [15] running with native CUDA 11 support on
a 3080 RTX Nvidia GPU. The rest of the PC hardware is
consumer-level devices, while the ToF camera is from the ADI
with medium depth settings and f=0 filtering parameters. The
details regarding the hyperparameters options can be found on
GitHub1.

E. Model evaluation metrics

In order to evaluate our model we created an algorithm
for measuring the MPI effect on planar surfaces, i.e planar
distortions. First of all, we use the trained model to obtain
the estimated pairs for the training set images and the test set
images, and from both of these pairs we extract the biggest
planar surface found in each of them. Each extracted point
cloud, now consisting only of a planar surface, has a set of
planar coefficients (determined using the RANSAC algorithm

1https://github.com/Funderburger/mpi-planar-correction.git



Fig. 6. Visual representation of equation 6. The top dotted line represents
the (sectioned) plane, parallel with the XY axes. The yellow region (R+)
represents the area (volume in 3D) of the plane with respect to XY axes if it
is translated with Zmin (the middle dotted line) and the green region (R−)
represents the area (volume in 3D) of the plane with respect to XY axes if it
is translated with Zmax (the bottom dotted line)

of the Open3D library [21]) which we use, in order to apply
a transformation and a rotation to our plane to bring it in
a parallel position with the XY plane. Having the plane in
this position, as in Figure 6, we compute a global curvature
gradient:

curv grad =
1

m

m∑
i=1

|R−
i |

|R−
i |+ |R

+
i |

(6)

where:

• R− represents a vector containing all the z values of the
extracted plane below the XY axes;

• R+ represents a vector containing all the z values of the
extracted plane above the XY axes;

• m represents the number of points in the extracted plane.

Using (6) we can now compare the ground floor planes ex-
tracted from the raw input images and the ground floor planes
extracted from the model predicted images. The gradient will
have values in the range [0-1] since it represents (Figure 6)
what percentage of the whole area, yellow and green, occupies
the green area. Thus, by using this metric we can evaluate our
model to see how well it performs on the training set and
the test set. In Figure 7 we created a pair of histograms and
their corresponding standard deviation (for raw, respectively
predicted data) after we computed the curvature gradient for
all the 2128 extracted planes found in the training dataset. The
same process was used to create the histograms from Figure 8,
but for the 717 planes extracted from the test data set. As can
be observed from these two figures, our model decreases the
MPI effect on most planar surfaces as it lowers the curvature
gradient computed on the predicted data: from the [0.4− 0.5]
range to the [0.2−0.3] range on the training and test datasets,
but at the same time, it is not perfect, as can be seen, because it
also adds distortion to some planes, thus increasing the number
of planes with a curvature gradient in the range [0.6− 0.8].

Fig. 7. Training data histograms, with original data std: 0.0978 and predicted
and std: 0.1455

Fig. 8. Test data histograms, with original std: 0.0965 and predicted std:
0.1458

IV. EXPERIMENTAL VALIDATION WITH MOBILE ROBOT

A. Indoor setup

We test our trained model, with the depth camera attached to
the P3-AT robot. As can be seen in Figure 9, the model does
bring an improvement with regards to correcting the planar
surface, even though it is not very visible. A closer look can be
seen in Figure 10, where on a small scale, the model removes
some of the raw noise given by the camera, which offers a
more smooth surface.

Fig. 9. Indoor, robot case 1: left input point cloud, right predicted point cloud
(best visible in color)



Fig. 10. Indoor, robot case 2: left input point cloud, right predicted point
cloud (best visible in color)

B. Outdoor setup

Despite the fact that we were focusing on the indoor data
set, we also performed cross-validation on the outdoor data set
too. As it can be seen in Figure 11, the data that camera is able
to provide is noisy due to direct influence of the sun’s light
rays, even though the ground is made from solid concrete,
which is not a very reflective surface. While our model is
trying to rectify the ground, it contributes less to the surface
undistortion, which we interpret as the lack of the number of
outdoor training images in the dataset and the influence of
the strong lightning condition on the scene, affecting the data
capture with the ToF camera.

Fig. 11. Outdoor: left input point cloud, right predicted point cloud (best
visible in color)

V. CONCLUSION

In this work we proposed a novel end-to-end deep learning
based multi-path-interference reduction for pulse based Time
of Flight cameras based on Feature Pyramid Networks. To gen-
erate training data, we used a two-stage sampling consensus-
based planar patch extraction algorithm. For the loss, we
considered various types of empirically determined metrics,
while as for the evaluation metric, we constructed our own
curvature measuring gradient in order to compare two different
planes without being affected by their scales.

As future work, we would like to extend this method
towards regular geometric shapes which can be extracted with
sampling consensus based methods for reducing the MPI on
these surfaces as well.
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