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Abstract: In this work we propose a novel next best view (NBV) generation algorithm for
volumetric information maximization. The primary data source is a Time-of-Flight (ToF)
camera and the output is the next position of the depth sensor that maximizes a chosen
score, either coverage or histogram of volumetric estimations for parallelepipedic shapes on the
observed scene. Our learning-based method was validated on a large scale of real and synthetic
data. The demo code, custom data sets, and videos are available on the author’s website.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Trajectory and path planning, perception and sensing, deep neural network

1. INTRODUCTION

The problem of reconstructing or mapping an a priori
unknown space lies on the border of robotics and computer
vision domains. This problem combines the perception of
a scene with planning to gain the most information in
consecutive measurements. To do this, the choice of sensor
placements or viewpoints is essential, which in (Eiden-
berger and Scharinger, 2010) is mentioned as active per-
ception whereas in (Mendoza et al., 2020) it is called next-
best view (NBV) planning. The main problem addressed
with NBV estimation is the finding of the optimal view
sequence to minimize the number of measurement steps
and to maximize in the same time the gained information.
Thus, a well-tuned algorithm can determine in a few cap-
tures the whole 3D model of the unknown space or object,
resulting in a quick reconstruction setup.

NBYV estimation in robotics has been well studied in the
last decades (C.I.Connolly, 1985), (Banta et al., 2000),
(Massios et al., 1998), (Isler et al., 2016a), (Kriegel et al.,
2015) and is still a research focus today (Vasquez-Gomez
et al., 2021), (Zeng et al., 2020b), (Mendoza et al., 2020).
The most common approach is based on the generation
and testing of 2D or 3D sensors as presented in (Scott
et al., 2003). In this approach, the NBV algorithm has as
input a partial scene view, which in the case of a 3D sensor
typically is a point cloud, some viewpoint candidates, and
generates the next viewpoint for the sensor, to complete
the previous measurements. For 3D sensors, the volumetric
approach is the most popular (Zeng et al., 2020a), which
transforms discrete 3D points into a voxel representation
and, using advanced ray casting algorithms, predicts cov-
erage and NBV. However, with the growth of the scene,
this approach tends to be computationally demanding, so
alternative solutions based also on deep learning solutions
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were proposed by Vasquez-Gomez et al. (2021), Zeng et al.
(2020b), Mendoza et al. (2020).

Deep learning-based solutions are a data-driven approach
to the NBV estimation problem, resulting in a fast heuris-
tic solution even for 3D data, as proposed in (Mendoza
et al., 2020). This paper specifically focuses on the problem
of 3D volumetric estimation of a parallelepipedic object in
a prior unknown space. More specifically, we are interested
in the NBV, which reduces the uncertainty in the volume
estimation of a regular geometric shape on the scene, as is
visible in Figure 1.

Fig. 1. Scan and NBYV estimation for box-like objects

We assume that the only input to the network is a
dense point cloud from a Time of Flight (ToF) type
camera, without this being a hard constraint on the
camera input type. We feed this input directly into the
customized PC-NBV (Zeng et al., 2020b) network, in
which we encapsulated the volumetric information gain
(VIG), i.e. the quality of the volumetric information about
the regular geometric shape on the scene. Based on this
information, we generate an NBV for the view which
reduces the most the uncertainty in the volume estimation.
This is relevant especially in a situation when from a
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single view the volume estimate is computed with low
confidence. The choice of these box-like objects is well
motivated by the clear need in the shipping and material
handling applications for a volumetric estimate of boxes.
Often these volumetric estimates are possible only from
multi-view systems, thus the need for an efficient NBV is
straightforward.

To generate the NBV constrained with VIG, we considered
for the network training phase a large synthetic and
real data set with ToF cameras that capture box-shaped
objects, as can be seen in Figure 2. From our data set using
advanced point cloud processing pipelines we extracted the
box shapes based on custom planar surface ensembles as
well as advanced corner detection and refinements similar
to (Sommer et al., 2020), (Pop et al., 2021). To our
knowledge, this is the first work to treat NBV in the
context of VIG for box-like objects in unknown scenes.

Box 1 Box 2 Box 3

Asus
Camera

Pico
Camera

Blender ~. . - I 5
model . .

Fig. 2. Real camera outputs from Asus and Pico ToF
cameras and synthetic box models used in Blensor

In addition to the standard NBV for generic point clouds,
we considered the custom case of ToF, i.e. we incorporated
in the VIG the ToF image specific constraints, such
as the incidence angle of the camera light projection
on the planar surfaces of the box which may result in
measurement artifacts, or the closeness of the box to
image boundaries which relates to the completeness of
the observed box. In addition to this, we validated our
algorithm on a large scale of real and synthetic data,
focusing on the generalization capabilities of the proposed
solution. The method proved to be able to generalize, i.e.
for objects not used at the training phase was still able
to predict correctly the NBV for volumetric estimation
purposes.

The contribution of this paper is summarized as follows: 1)
adaptation of the next best view problem to the volumetric
information gain setup; 2) computation of volumetric
information using planar and corner-based methods both
on synthetic and real ToF data; 3) extension of the
VIG setup for the training data set with ToF specific
constraints such as the angle of the planar surfaces with
the camera axes or the completeness of the measured
object; 4) extension of the PC-NBV (Zeng et al., 2020b)
with the generic case without view.

2. RELATED WORK

In this section, we shortly summarize the two main ap-
proaches for the NBV from the main literature: the tradi-
tional sampling-based ones and the learning-based variants
using deep learning techniques.

2.1 Traditional methods

The traditional methods for finding the next best view can
be classified into two categories: synthesis methods and
generate-and-test methods (Zeng et al., 2020b). Synthesis
methods compute directly the next best view under system
constraints and although they are quick, they do not have
the necessary robustness. The generate-and-test methods
optimize a pipeline in which, for a given point cloud as
input, the algorithm determines a set of viable candidate
positions and, for each position, it determines a score.
The selected position with the highest score is the NBV.
The difficulty of the problem stems from the fact that
the points in the different candidate positions are not
known. As such, the algorithm uses the input point cloud
to estimate a volumetric gain for each position. The final
purpose of the NBV in the traditional methods falls in one
of the following four classes: object or scene reconstruction
(Tamas and Goron, 2014), object recognition (Tamas
and Jensen, 2014; Tamas and Cozma, 2021) and pose
estimation (Frohlich et al., 2021), (Blaga et al., 2021).The
general outline of the pipeline for the traditional generate-
and-test methods can be summarized in Figure 3.

Depth 3D Candidate VIG Position Best
scan | | Model positions estimation scores score
Compute
intensive

Fig. 3. Structure of the generate-and-test NBV pipeline

According to the objective for the Next Best View and
the representation of the 3D model, the information gain
algorithm can be constructed and each view can be scored.
(Scott et al., 2003) introduced an important distinction
between model-based vs. non-model-based reconstruction
methods. Model-based methods assume a priori informa-
tion about the object whereas non-model based do not use
any information about the object geometry.

For object reconstruction applications, the discussion was
started by C.I.Connolly (1985). His proposed method re-
lied on a voxel space representation and used candidate
positions from a spherical distribution around the object.
The voxel space is necessary to determine the information
gain of each view. Massios et al. (1998) introduced a
quality criterion for views, while Banta et al. (2000) de-
veloped three criteria to select views based on occlusions.
Vasquez-Gémez et al. (2009) introduced a utility function
for the views and developed in (Vésquez and Sucar, 2011)
a method for dealing with position error. In (Vasquez-
Gomez et al., 2014) the two previous methods were com-
bined to create a system capable of predicting views for
reconstruction with position errors. Isler et al. (2016b)
synthesized several volumetric gain algorithms in the voxel
space. Delmerico et al. (2018) built on the findings of
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Isler et al. (2016b) to create a comparison between the
volumetric gain algorithms. A recent survey on traditional
methods can be found in (Zeng et al., 2020a).

2.2 Learning based methods in 3D

Learning-based methods aim to avoid lengthy computa-
tions for each candidate view and instead try to estimate
the scores for each view directly from the input 3D model
representation. The neural network creates a signature for
each depth image and manages to associate an array of
scores that represent the estimates of volumetric gain for
each view. If the network is successful, the scores for each
view will be accurate enough to create a clear ordering of
the views and the view with the highest score is the NBV,
as is shown in Fig. 4.

3D | | Depth | |
Model scan

Neural net
N positions

|| Score estim
positions

|| Position
selection

Fig. 4. Neural network architecture for NBV pipeline

Wu et al. (2015) brought an important contribution in this
field with the neural network. The network can recognize
and complete point cloud models, and, under this inter-
pretation, the view that best completes the point cloud is
the one selected. Another important contribution comes
from Hepp et al. (2018). The networks learn to score
views by utility, which makes it possible to choose a new
position with the maximum estimated score. Their work is
focused on scene exploration, rather than reconstruction.
(Mendoza et al., 2020) is closest to our problem definition.
In this work, the authors attempted to solve the NBV
problem for reconstruction by converting point clouds to
voxels and using a convolutional neural network to predict
the view that maximizes the potential number of new
voxels that can be added to the input point cloud. This
method predicts the final position from a limited set of
discrete positions, hence the problem is a classification one.

3. PROPOSED METHOD

Our approach was based on a deep learning active percep-
tion setup called PC-NBV by Zeng et al. (2020b) which
is built on a multi-stage neural network. In essence, our
network architecture is the same as PC-NBV but we do not
use the view state vector, meaning we do not know the po-
sition of the camera. Furthermore, our network is built to
predict one step without taking into consideration previous
steps, as PC-NBV does with the view state. Without the
position of the camera, our network can be immediately
deployed without needing pose from IMU information.

We consider a set of N possible camera placements with
a corresponding N-dimensional array of scores, one score
for each possible view. In the PC-NBV architecture, the
possible positions of the camera are considered in order,
hence the first element of the score array corresponds to
the first possible position, the second score corresponds
to the second position, and so forth. For our network, we
do not know a priori which of the possible positions the
camera is in. We only know that there is an overlying order
between them. Furthermore, we consider point clouds from
a camera position to have clear differences from point

clouds of different positions. Considering the score of
the current camera position as the first position in the
output array, we can consider in order the rest of the
camera positions that follow the current one. By applying
a circular permutation to the output scores where we know
the global position, we create training data for the neural
network to predict the permutation according to the input
point cloud, as can be seen in Fig. 5 and Fig. 6.

‘ Pos k

Permut(k)

‘ Pos k |

Fig. 6. Network predictions without permuted scores

The PC-NBV network and our modified network can
be trained to predict scores for each view. This means
that we select scores that reflect a continuous function
based on the input point cloud, or we select scores that
reflect a discrete choice between the views, like one hot
encoder. Our modified network has to compensate for the
lack of camera position. The scores for which the PC-
NBV network was built are related to coverage, i.e. the
completeness of the 3D reconstruction obtained for each
position in a limited set. By changing the score to reflect
a different aspect of the point cloud, the network can
be trained to choose the views that maximize a different
objective.

To test the different training methods, we used three
networks with different training: 1) PC-NBV-noview-
coverage, 2) PC-NBV-noview-vol-real, and 3) PC-
NBV-noview-vol-synthetic. PC-NBV-noview-coverage
is a direct comparison between PC-NBV and our modified
network without the view state regarding point cloud
coverage. PC-NBV-noview-vol-real outputs a one-hot en-
coding of the position with the lowest volumetric estima-
tion error on real data. PC-NBV-noview-vol-synthetic is
the same as PC-NBV-noview-vol-real but it is trained on
synthetic data. All our networks use the same architecture
detailed in Fig. 7 but were trained with different data.

3.1 Architecture details

The network is composed of parts from different neural
network architectures that were designed for tasks related
to extracting features from point clouds. The backbone
of the network is provided by the feature extraction unit
described by Yuan et al. (2018). This permits the compu-
tation of features from the point cloud and the selection
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Fig. 7. General structure of the PC-NBV network without
view state vector

of a global feature using max pooling. This network archi-
tecture was further enhanced with the feature extraction
module described by Yifan et al. (2019), the self-attention
module described by Zhang et al. (2019) and utilized by Li
et al. (2019), with the final multilayer perceptron used to
link a final score to the features. All these network modules
are synthesized in the PC-NBV network described by Zeng
et al. (2020b).The self-attention module is described in
(Zhang et al., 2019) and a version of it is implemented
in the network of Li et al. (2019) and subsequently by
Zeng et al. (2020b). The goal of this module is to help
compute long-distance interactions between features in
the point cloud and to enhance feature integration after
concatenation.

3.2 Loss function

The loss function used in all three networks is the Mean
Squared Error (MSE) between the ground truth scores
and the predicted scores, same as in (Zeng et al., 2020b).
For the first network, the MSE is calculated between
the circularly permuted coverage scores and the network
output. For the second and third networks, the MSE is
calculated between the permuted position selection array
and the network predictions.

The network is trained with the same parameters as
suggested by Zeng et al. (2020b). The starting learning
rate is 0.0001 with a batch size of 32. The learning rate
decays every 50000 iterations by 0.7. A = 0.0001 is chosen
for the loss Lo utilized in weight regularization.

3.8 Volumetric information gain (VIG)

For volumetric information gain (VIG), we used to rank
potential views with two different approaches. Each ap-
proach has a different objective for the views; hence, they
are used for different purposes. Coverage based VIG is used
for the reconstruction problem,where the goal is to gather
in each successive view the most number of points to re-
construct an object whereas the VIG based on volumetric
estimation error is an example of an alternative score for
the views that reflects a different objective, namely the
improvement of the volumetric measurement.

Coverage based VIG  The coverage represents the per-
centage of points from the ground truth which have at least
one neighbouring point at a distance bellow a threshold.
For a sufficiently low threshold, each new view offers new
points that will be close to the ground truth, eventually
leading to coverage close to 95-99%. Because each suc-
cessive new view offers less and less new points, the first
views are the most important. To simplify the problem,
we only considered the first move; therefore, the network

must choose between multiple possible views, the one that
offers the highest coverage score.

VIG based on wvolumetric estimation error Histogram
The second method involves finding the position for which
there is a higher probability of having a volumetric es-
timation close to 0. The volumetric estimation is done
using the algorithm described by Sommer et al. (2020).
Sommer’s algorithm outputs a collection of lines obtained
from projecting perpendicular planes. By selecting line
triplets that are close to each other, the width, length,
and height of a box can be identified and the volume
is computed. Knowing the ground truth volume values,
the relative volumetric error can be determined for each
volume estimate. The relative volumetric error represents
the value used to compute the NBV.

A comparison between volumetric estimation error his-
tograms at each position is needed to compute the score
by which the views are chosen. The view with the best
histogram score will be chosen. Thus for each object type
we must sample a large enough number of point clouds in
each view and to obtain the volumetric estimation error for
each of the sampled point cloud. By scoring the histograms
of each position, we can select the position with the highest
histogram score as the NBV. Thus the VIG is given by the
score associated to the histogram of potential volumetric
errors for each position, as can be seen in Fig. 8.
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Fig. 8. Volume Information gain estimation and histogram

Three datasets were created in order to train and test
the PC-NBV network. PC-NBV-noview-coverage was
used to show that the PC-NBV network could learn to
predict the scores permuted circularly by the starting
position, as can be seen in Fig. 10. This modification
would exclude the need for the view state from the network
architecture and would allow for the direct use of a point
cloud as input. For each point cloud, the output scores
must be computed and associated. For the first network,
the output scores are calculated with the coverage finding
algorithm described by Zeng et al. (2020b). The scores are
then permuted circularly by the starting position.

View state '-b Coverage Coverage Ground truth
timati Permut ™= coverage
Eoniclond estimation scores —
Loss
function
Neural net Predicted
e —
N positions Scores

Fig. 9. Training for PC-NBV-noview-coverage

PC-NBV-noview-vol-real is trained with point clouds
from a real camera whereas PC-NBV-noview-vol-synt
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is trained with point clouds from synthetic data. Each
network is optimized to predict a selection score that
represents the position that minimizes the volumetric
error. The working structure can be seen in Fig. 9. Since
the selection score is built by analyzing the scores from
each view, a histogram with the volumetric estimations
from each position is needed to create the training data.
The volume of the box is estimated using the orthogonal
planes for each training point cloud. Knowing the ground
truth dimensions of the box, the relative estimation error
is computed for each box. For each position of the box,
a histogram is made with the error estimations for all
point clouds in the set. Once all histograms have been
determined for the training and validation set, the position
with the largest number of observations is selected.

View state P
Point cloud

Compute Vol _Histograms

i | Position
I —| selection
B optimal

Neural net

N positions

Fig. 10. PC-NBV-vol-synth and PC-NBV-vol-real modules
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4. EVALUATION

For predicting permuted scores, the network was compared
with PC-NBV on the same test data set. The network
needs to be able to predict permuted coverage scores
without having the view state as input. If the scores are
similar to PC-NBV, the proof of concept of the network
without the view state is complete.

For predicting permuted position on real data, the network
is evaluated using point clouds from the same recording.
The network needs to match the point clouds with the
right permuted position for each box.

Finally,two data sets are used for synthetic point clouds
with unknown camera position. The first set consists of
point clouds taken for the same boxes from the same
positions with slight random positions and rotation errors
for the camera. The second set consists of point clouds
from different boxes in the same positions with small
random errors.

4.1 Dataset used for evaluation

PC-NBV-noview-coverage The training instructions men-
tioned by Zeng et al. (2020b) were used with the Shapenet
database (Chang et al., 2015) being selected. 4000 models
from 8 classes of objects were selected for training, 800
different models from the same eight classes were used for
validation, and 400 objects from eight other classes were
used for testing.

PC-NBV-noview-vol-real 3 boxes as shown in figure
2 were captured using 2 ToF cameras from 4 different
positions and angles. The resulting point clouds were
randomly split into 70% train, 30% valid.

Synthetic data PC-NBV-vol-synth 11 box models with
different dimensions were created in Blensor, with a set
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of four predetermined positions was used together with
random positioning and rotation to the camera to induce
differences between the resulting point clouds in the same
position. 700 scans/position/box were taken for training
and 300 scans/position/box for validation.

4.2 Performance evaluation and comparison

Predicting coverage scores without view state  As can be
seen in Table 1, the evaluations of the first network were
compared with the one from PC-NBV with view state.
Our network which is designated NBV-noview-coverage,
uses only the point cloud as input and outputs the scores of
neighbouring views. The percentage of network predictions
that matched ground truth data is given in the exact posi-
tion column (exact.pos (%)). Since different views can give
similar scores, we considered the percentage of network
predictions given in column Approximate positions (Ap.
pos)(%) that have a coverage score less than the greedy
score by a maximum threshold given in column 2 of Table
1 as Cov. diff. The missing camera position leads to a slight
worsening of the performance but leads to greater use-case
flexibility. For a 6 % drop in accuracy, the network can
only use the point cloud as input and can be used directly
with a camera without needing IMU data to determine the
position and orientation of the camera.

Table 1. Coverage-Based VIG

Model [ Cov. diff | Fw. time (s) [ Ap. pos. (%) | Exact pos. (%)

0.05 0.024 91.7 61.69
Nifv' 0.03 0.024 84.28 61.69
ZO W 0.01 0.024 73.67 61.69
v 0.005 0.024 69.19 61.69
0.05 0.028 85.7 56.22
ffi 0.03 0.028 77.94 56.22
COV W 001 0.024 66.63 56.22
v 0.005 0.024 62.32 56.22
Table 2. VIG based on histograms
Model | Time (s) | Acc. same box (%) [ Acc. diff. box(%)
nv-vol-syn. 0.022 99.35 22.34
nv-vol-real 0.037 100 -

Predicting NBV using histograms VIG  In Table 2, two
networks that used VIG histograms are compared. Both
networks have high accuracy for point clouds taken under
the same conditions as the training data. In the case of a
synthetic data network, the test data from the same box
models have a high accuracy, but for the point clouds from
different box models, the network output is less robust.

5. CONCLUSIONS

In this work, we presented a learning-based next best
view generation algorithm for the volumetric estimation
of regular geometric shapes from 3D point clouds. We first
showed that the network is capable of learning permuted
scores, allowing us to use only point clouds. Afterwards
the networks trained with real and synthetic point cloud
data can accurately predict the NBV for point clouds
of the same object class as the training data. In the
future, we intend to improve the prediction for point clouds
taken from different object classes and to generalize our
algorithm for arbitrary shapes in a scene.
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