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ABSTRACT

In this research paper, we introduce a novel approach to enhance the performance of 2D feature matching
and pose estimation through the integration of a hierarchical attention mechanism and knowledge distillation.
Our proposed hierarchical attention mechanism operates at multiple scales, enabling both global context
awareness and precise matching of 2D features, which is crucial for various computer vision tasks. To further
improve our model’s performance, we incorporate insights from an existing model PixLoc (Sarlin et al., 2021)
through knowledge distillation, effectively acquiring its behavior and capabilities by ignoring dynamic objects.
SAM-Net outperforms state-of-the-art methods, validated on both indoor and outdoor public datasets. For the
indoor dataset, our approach achieves remarkable AUC (5°/10° /20°) scores of 55.31/71.70/83.37. Similarly,
for the outdoor dataset, we demonstrate outstanding AUC values of 26.01,/46.44/63.61. Furthermore, SAM-Net
achieves top ranking among published methods in two public visual localization benchmarks, highlighting the

real benefits of the proposed method. The code and test suite can be accessed at link.!

1. Introduction

Local feature matching (Kelenyi & Tamas, 2023) is a fundamen-
tal problem in computer vision and robotics, with applications in
structure-from-motion (SfM) (Schonberger & Frahm, 2016), relative
pose estimation (Frohlich, Tamas, & Kato, 2019), simultaneous localiza-
tion and mapping (SLAM) (Domsa, Konievic, Kelenyi, & Tamas, 2023),
and various other areas (Blaga, Militaru, Mezei, & Tamas, 2021; Farhat,
Chaabouni-Chouayakh, & Ben-Hamadou, 2023; Molnar & Tamas, 2023;
Pop & Tamas, 2022). The goal of local feature matching is to establish
correspondences between image points across different views, which
can later be used to recover the underlying 3D structure of the environ-
ment. This is typically achieved by detecting and describing distinctive
features in images, such as corners, blobs, or edges, and then matching
these features across different views.

In recent years, the integration of deep learning techniques has
significantly enhanced local feature matching, leading to state-of-the-
art performance across various applications (Szegedy et al.,, 2015).
However, challenges persist due to factors like changes in illumination,
viewpoint, scale, and occlusion. Illumination variations can distort
object appearance, while alterations in viewpoint and scale introduce
geometric transformations that traditional methods struggle to handle

(Lowe, 2004a). Furthermore, occlusion, where objects are partially
obstructed, complicates the identification of critical feature points for
matching (see Fig. 1).

To address these challenges, researchers have proposed a variety
of algorithms and techniques, such as hierarchical feature matching,
deep learning-based methods, and real-time feature tracking. Some of
the most influential papers in this field include SIFT (Lowe, 2004b)
(Scale-Invariant Feature Transform), SURF (Speeded-Up Robust Fea-
tures) (Bay, Tuytelaars, & Van Gool, 2006) and ORB (ORB: An efficient
alternative to SIFT or SURF) (Rublee, Rabaud, Konolige, & Bradski,
2011). These methods were widely adopted in SLAM and SfM pipelines
and significantly improved the accuracy and robustness of local feature
matching. Another promising direction for improving local feature
matching is knowledge distillation. Knowledge distillation (Gou, Yu,
Maybank, & Tao, 2021) is a technique that involves transferring knowl-
edge from a large, complex model, such as ResNet (Targ, Almeida, &
Lyman, 2016) or VGG (Sengupta, Ye, Wang, Liu, & Roy, 2019), known
as the teacher, to a smaller, simpler model (Kolodiazhnyi, 2022), known
as the student. This approach was shown to be effective in reducing the
computational complexity of local feature matching while maintaining
or improving its accuracy and robustness.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering /computer-science/journals.
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Fig. 1. This example demonstrates that SAM-Net is capable of finding more accurate
correspondences than LoFTR (Sun, Shen, Wang, Bao, & Zhou, 2021) even in challenging
conditions (green: correct feature matching, red: false feature matching).

Self-attention methods (Wang, Zhang, Yang, Peng, & Stiefelhagen,
2022), on the other hand, gained popularity for local feature matching
due to their ability to capture long-range dependencies between the
feature descriptors and improve their discriminability and robustness.
The self-attention module is essential to achieving this objective and
has the potential to increase the pipeline’s accuracy and efficiency
for feature matching. The ability to model long-range dependencies
between feature descriptors, which is challenging with conventional
feature matching methods that rely on local feature descriptors, is
one of the main benefits of self-attention methods. The self-attention
module can increase the discriminability and robustness of the fea-
ture descriptors by capturing the pairwise relationships between them,
resulting in more precise and reliable feature matching.

1.1. Primary motivations

Our primary motivation is to advance local feature matching in
computer vision and robotics. This process is critical for establishing
correspondences between image points across different views in or-
der to recover 3D environmental structures. The following challenges,
prevent the creation of a deep local feature matcher for detector-free
techniques:

(a) Standard detector-free methods typically begin with a Convolu-
tion Neural Network (CNN) for feature extraction, followed by
the incorporation of Transformer layers to capture long-range
context. However, there is a context coverage gap between the
Transformer’s global scope and the CNN’s local focus, which may
block deep feature interaction later on.

(b) In scenes with repetitive patterns or symmetrical structures,
CNN'’s translation invariance can cause ambiguity. To handle
this, current detector-free methods use absolute position en-
codings prior to Transformers, but the positional information
reduces as the Transformer layers deepen. Humans, on the other
hand, associate objects across observations using both absolute
and relative positions.

(c) While network depth appears to be important for feature match-
ing, LoFTR’s linear Transformer finds it difficult to effectively
aggregate context in deeper layers. This is because its context-
independent self-attention method cannot sufficiently model the
relevance of all keypoints.

Motivated by the aforementioned insights, we propose Self-Attention
based Feature Matching with Spatial transformers and Knowledge Distilla-
tion (SAM-Net), an efficient local feature matching technique.

1.2, Innovation aspects

Our proposed technique introduces novel aspects to the field of local
feature matching in computer vision and robotics. To advance 2D fea-
ture matching, our proposed method combines the strengths of LoFTR
(Sun et al., 2021), a state-of-the-art localization model, with knowledge
distillation from PixLoc (Sarlin et al., 2021). By distilling knowledge
from Pixloc at different levels, which ignores dynamic objects, we can
focus on learning robust and discriminative features specific to static
objects. The exclusion of dynamic objects during training improves
the model’s ability to accurately localize static objects even in the
presence of dynamic elements (e.g. cars, bicycles, pedestrians), thereby
improving overall performance.

1.3. Contributions

We summarize our contributions as follows:

« A hierarchical attention mechanism that performs attention oper-
ations at multiple scales, allowing for both global context aware-
ness and precise matching of 2D features;

« A novel approach based on knowledge distillation to enhance

our model’s performance by integrating insights from an exist-

ing model, effectively acquiring its behavior and capabilities by
ignoring dynamic objects;

State-of-the-art performance in two-view pose estimation, sur-

passing baselines, and demonstrates potential for seamless in-

tegration into complex applications through challenging visual
localization tasks.

.

Our goal is to provide a comprehensive understanding of local
feature matching and its applications to localize pose estimation using
self-attention and transformers, as well as to facilitate the development
of more robust and accurate algorithms for this task by focusing only
on the relevant parts of the scene by ignoring dynamic objects.

1.4. Sections of the manuscript

The paper is structured as follows: the Introduction contains the
main motivation, problem description and a summary of the proposed
method. Section 2 presents the related methods from the state-of-the-
art including the classical and learning-based methods, while Section 3
presents in detail the proposed method. In Section 4 the experimental
parts are described and the paper concludes with the last Conclusion
section.

2. Related works

In this section, we briefly survey the existing literature on detector-
based, detector-free local feature matching, and transformer-based
methods. We start by presenting the early work in this area, which
laid the foundation for many of the current techniques. Furthermore,
we focus on the most recent methods, including deep learning-based
approaches. Table 1 contains a comprehensive list of the top related
papers on feature matching.
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2.1. Detector-based local feature matching

Detector-based local feature matching is a widely used technique in
computer vision that involves detecting distinctive features in an image
and then matching them across different images to perform tasks such
as object recognition, image retrieval, and 3D reconstruction (Kang,
Yang, Yang, & Cheng, 2020). In recent years, significant progress has
been made in this area, with several new algorithms being developed
to improve the performance and robustness of local feature matching.

One of the earliest methods for local feature matching is the SIFT
(The Scale Invariant Feature Transform) algorithm (Lowe, 2004a). SIFT
is one of the earliest methods for local feature matching. It extracts
scale-invariant keypoints by detecting local extrema and describes them
using a histogram of gradient orientations. SIFT employs a nearest-
neighbor algorithm and a ratio test for matching keypoints across
images.

Another popular method is the SURF (Bay et al., 2006) (Speeded Up
Robust Features) algorithm. SURF is a faster and more efficient alter-
native to SIFT that uses an approximate Laplacian of Gaussian filter to
detect scale-invariant keypoints and a modified Haar wavelet descriptor
to describe them. SURF also uses a fast approximate nearest-neighbor
algorithm called the kd-tree to match keypoints across images.

ORB (Rublee et al., 2011) (Oriented FAST and Rotated BRIEF): is
another method proposed by Rublee et al. in 2011. ORB combines
the FAST corner detector with the BRIEF descriptor and introduces an
orientation component to handle rotation invariance. It is designed to
be faster and more efficient than SIFT (Lowe, 2004b) and SURF (Bay
et al., 2006).

DenseGAP (Kuang, Li, He, Wang, & Zhao, 2022) (Graph-Structured
Dense Correspondence Learning with Anchor Points): leverages a graph
structure and anchor points to provide reliable prior information for
context modeling. It employs a graph-structured network to efficiently
propagate multi-level contexts, generating high-resolution feature maps.
A coarse-to-fine framework is used for accurate correspondence predic-
tion.

ClusterGNN (Shi et al., 2022) (Cluster-based Coarse-to-Fine Graph
Neural Network for Efficient Feature Matching): addresses feature
matching using an attentional Graph Neural Network (GNN) archi-
tecture. It dynamically separates keypoints into distinct subgraphs
through a progressive clustering module, minimizing unnecessary con-
nections. A coarse-to-fine approach is employed to reduce misclassifi-
cation within images.

Recent research has focused on increasing the efficiency and robust-
ness of detector-based local feature matching. LIFT (Learned Invariant
Feature Transform) (Yi, Trulls, Lepetit, & Fua, 2016) is a deep neural
network-based algorithm that learns invariant local feature descriptors,
providing resilience to common image transformations like rotation,
scaling, and lighting changes. These learned descriptors can be used
for tasks such as image matching, object recognition, and 3D recon-
struction, outperforming traditional hand-crafted feature descriptors.
Another notable method is BRISK (Binary Robust Invariant Scalable
Keypoints) (Leutenegger, Chli, & Siegwart, 2011), which uses a binary
descriptor to detect and describe local features, exhibiting robustness
and computational efficiency. FREAK (Fast Retina Keypoint) (Alahi,
Ortiz, & Vandergheynst, 2012) is a fast and efficient method using a
binary descriptor, suitable for various computer vision applications,
including object recognition and tracking.

Deep learning advances in recent years have resulted in the devel-
opment of excellent algorithms for local feature matching. SuperPoint
(DeTone, Malisiewicz, & Rabinovich, 2018) is a fast and accurate deep
neural network that detects keypoints and computes descriptors. LF-
Net (Ono, Trulls, Fua, & Yi, 2018) utilizes a Siamese network for
matching local features and achieves state-of-the-art performance. Su-
perGlue (Sarlin, DeTone, Malisiewicz, & Rabinovich, 2020) introduces
a machine learning-based approach using a graph neural network
(GNN), demonstrating significant improvements in matching accuracy.
D2-Net (Dusmanu et al.,, 2019) and R2D2 (Revaud, De Souza, Humen-
berger, & Weinzaepfel, 2019) are recent methods that have also shown
outstanding performance on benchmark datasets.

2.2. Detector-free local feature matching

Detector-free local feature matching is an emerging technique in
computer vision that eliminates the need for keypoint detectors. Tra-
ditional methods like SIFT (Lowe, 2004b) and SURF (Bay et al., 2006)
rely on detectors, but they can be computationally expensive and
less effective in certain image conditions. In contrast, detector-free
methods directly operate on image pixels, extracting features at regular
intervals. This approach is computationally efficient and works well in
challenging regions.

An example of a detector-free local feature matching method is
Dense SIFT. This method extracts SIFT descriptors at regularly spaced
pixels in an image rather than at keypoints. Another example is DAISY
(Tola, Lepetit, & Fua, 2010) (Dense, Invariant, and Spatially Augmented
Descriptors), which extracts dense features in a grid pattern and uses an
adaptive histogram equalization technique to enhance local contrast.

More recently, ASpanFormer (Chen et al., 2022) (Detector-Free Im-
age Matching with Adaptive Span Transformer) was proposed: it makes
use of a novel attention operation to adjust attention span in a self-
adaptive manner. It regresses flow maps to identify the search region,
generates a sampling grid of adaptive size, and computes attention
across two images in derived regions. ASpanFormer maintains long-
range dependencies and fine-grained attention among relevant pixels,
eliminating the need for object detection and achieving high accuracy
in object matching. The CNN backbone extracts initial features, which
are updated with iterative Global Local Attention (GLA) blocks, and a
matching module determines final matches.

HTMatch (Cai, Li, Wang, Li, & Liu, 2023) (An efficient hybrid
transformer-based graph neural network for local feature matching):
uses a hybrid transformer-based GNN for local feature matching. It
combines self- and cross-attention to condition feature descriptors be-
tween image pairs. This enables efficient attentional aggregation us-
ing a single transformer layer. It also introduces a spatial embed-
ding module to enhance spatial constraints and utilizes a seeded GNN
architecture for improved efficiency and effectiveness.

DeepMatcher (Xie, Dai, Wang, Li, & Zhao, 2023) (A Deep
Transformer-based Network for Robust and Accurate Local Feature
Matching): introduces a Slimming Transformer approach for dense
pixel-wise matching. SlimFormer is employed to model relevance
among all keypoints and achieve long-range context aggregation effi-
ciently. Position encoding, layer-scale strategy, and the Feature Transi-
tion Module are introduced to improve performance. DeepMatcher uses
deep-narrow transformer layers and a network-based refinement block
for more precise matches.

DAN-SuperPoint (Li et al.,, 2022) (Self-Supervised Feature Point
Detection Algorithm with Dual Attention Network): the paper presents
a network that uses a feature pyramid structure for multi-scale feature
fusion, followed by a position and channel attention module to obtain
the feature dependency relationship of the spatial and channel dimen-
sions. The resulting weighted feature maps are added to enhance the
feature representation and are trained for detectors and descriptors.

MatchFormer (Wang et al., 2022) (Interleaving Attention in Trans-
formers for Feature Matching): introduces a hierarchical encoder archi-
tecture that combines self-attention and cross-attention for improved
matching robustness. This approach interweaves self-attention and
cross-attention in feature extraction and matching, resulting in an in-
tuitive extract-and-match scheme. The match-aware encoder enhances
model efficiency and reduces the decoder workload. Incorporating self-
and cross-attention on multi-scale features in a hierarchical structure
improves matching robustness, especially in challenging indoor scenes
or with limited outdoor training data.

DRC-Net (Li et al, 2020) (Dual-resolution correspondence net-
works): DRC-Net is a model that extracts both coarse- and fine-
resolution feature maps for dense correspondences. It uses a two-step
process, generating coarse maps and refining them with a consensus
module. The fine-resolution maps guide the final correspondences
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Table 1

A comprehensive table containing the most recent works in the field of feature matching.

Paper (Author, Year) Concept

LightGlue (Lindenberger, Sarlin, & Pollefeys, 2023) This framework uses introspection to determine whether further computation is necessary in addition to predicting
correspondences after each computational block.

DeepMatcher (Xie et al., 2023)

Introduces a Slimming Transformer approach for dense pixel-wise matching. SlimFormer is used to efficiently model

relevance among all keypoints and achieve long-term context aggregation.

HTMatch (Cai et al., 2023)

A hybrid transformer-based Graph Neural Network is used for local feature matching. It combines self- and cross-attention

to condition feature descriptors in image pairs.

TopicFM (Giang, Song, & Jo, 2022)
matching.

ASpanFormer (Chen et al., 2022)

Improves matching robustness by encoding high-level contexts in images using topic modeling and probabilistic feature

A novel attention operation to adjust attention span in a self-adaptive manner. It regresses flow maps to identify the

search region, generates an adaptive sampling grid, and computes attention across two images in derived regions.

ClusterGNN (Shi et al., 2022)

Is addressed using an attentional Graph Neural Network (GNN) architecture. It dynamically divides keypoints into distinet

subgraphs using a progressive clustering module, reducing unnecessary connections.

DAN-SuperPoint (Li et al,, 2022)

The paper presents a network that uses a feature pyramid structure for multi-scale feature fusion, followed by a position

and channel attention module to obtain the feature dependency relationship of the spatial and channel dimensions.

DenseGAP (Kuang el al., 2022)
MatchFormer (Wang et al., 2022)

Uses a graph structure and anchor points to provide reliable prior information for context modeling.

Incorporates self- and cross-attention on multi-scale features in a hierarchical structure that improves matching robustness,

especially in challenging indoor scenes or with limited outdoor training data.

LoFTR (Sun et al., 2021)

To improve cross-view features, a combination of self and cross attention blocks is used. LoFTR replaces global full

attention with the Linear Transformer (Katharopoulos, Vyas, Pappas, & Fleuret, 2020) to make computations more

manageable.

Patch2Pix (Zhou, Sattler, & Leal-Taixe, 2021)

The proposed architecture extracts features from a correspondence network using an adapted ResNet34 backbone.

Patch2Pix then refines the proposals at image resolution by employing two levels of regressors with the same architecture.

DRC-Net (Li, Han, Li, & Prisacariu, 2020)

It extracts both coarse- and fine-resolution feature maps. It works in two steps, first generating coarse maps and then

refining them with the agreement module.

based on the refined coarse tensor. By selecting matching scores at the
coarse resolution, the model improves reliability and accuracy without
the need for expensive computations on the fine-resolution features.
DRC-Net enhances matching performance efficiently.

TopicFM (Giang et al.,, 2022) (Robust and Interpretable Feature
Matching with Topic-assisted): this paper proposes a novel image-
matching method that improves matching robustness by encoding high-
level contexts in images through topic modeling and probabilistic fea-
ture matching. The method trains latent semantic instances called
topics, explicitly modeling an image as a topic distribution, and fo-
cuses on semantic areas for improved matching. The architecture finds
coarse matches from low-resolution features and refines coordinates at
high resolution, providing a promising solution for improving image-
matching performance in various computer vision applications.

Patch2Pix (Zhou et al., 2021) (Epipolar-guided pixel-level corre-
spondences): proposes a new approach to estimate correspondences in
a detect-to-refine manner, using patch-level match proposals followed
by refinement with a novel network called Patch2Pix. The proposed
architecture extracts features using an adapted ResNet34 backbone and
feed them into a correspondence network to detect match proposals.
Patch2Pix then refines the proposals using two levels of regressors
with the same architecture to progressively refine the match proposals
at image resolution. For each match proposal, the mid-level regressor
outputs a confidence score and a pixel-level local match, updating
the search space accordingly. The fine-level regressor outputs the final
confidence score and pixel-accurate match.

LightGlue (Lindenberger et al., 2023): by leveraging predictive anal-
ysis and introspection, LightGlue introduces a paradigm shift in corre-
spondence computation. This framework not only predicts correspon-
dences after each computational block, but it also uses introspection
to determine whether additional computation is required. LightGlue's
early elimination of non-matchable points, which directs its attention
to the visible area and thus improves accuracy, is a standout feature.
LightGlue redefines how correspondences are established in visual data
by combining predictive capabilities and selective focus, promising
efficient and precise results.

Detector-free local feature matching has demonstrated promising
outcomes in diverse computer vision tasks, including image matching,

object recognition, and tracking. These methods may not perform
optimally in certain scenarios, such as instances involving significant
transformations or occlusions. However, the removal of keypoint de-
tection from the local feature-matching process has introduced fresh
prospects for the development of computer vision algorithms that are
both more efficient and precise.

2.3. Optimized transformers

The combination of transformers and local feature matching is a
powerful approach to solving problems in computer vision (Jarvis,
1983), such as image recognition (Dosovitskiy et al., 2020), general
part assembly (Li, Zeng, & Song, 2023) and object detection (Carion
et al., 2020; Dai, Cai, Lin, & Chen, 2021). Transformers are a custom
type of neural network architecture that has been primarily used in nat-
ural language processing (Chowdhary & Chowdhary, 2020). They excel
at modeling long-range dependencies between input sequences and
have shown impressive results in tasks such as language translation,
language modeling, and text classification.

The vanilla transformer’s memory cost grows quadratically with the
sequence length, limiting its efficiency for longer sequences. Recently,
various approaches (Katharopoulos et al., 2020) suggested to improve
transformers’ efficiency, such as sparse attention, hierarchical transform-
ers, linear transformers (Shen, Zhang, Zhao, Yi, & Li, 2021) and those
with fixed receptive fields.

3. Materials and methodology

3.1. Preliminaries

In this section, we provide more context and detail on the LoFTR
(Sun et al., 2021) and PixLoc (Sarlin et al.,, 2021) algorithm, as it
forms the basis of our method. As such, we describe the LoFTR, PixLoc
in detail, and the knowledge distillation mechanism as it is necessary
to understand the underlying principles and techniques in order to
highlight the novelty of the proposed method.
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Feature Extractor

PixLoc
Feature Extractor

3.1.1. LoFTR

The work entitled Detector-Free Local Feature Matching with Trans-
formers (Sun et al., 2021) proposes a novel approach for local feature
matching in computer vision that does not require the use of hand-
crafted detectors. Instead, the authors use a transformer network to
extract features from input images and match them across different
scales. LoFTR (Sun et al., 2021) employs a combination of self and cross
attention blocks to enhance cross-view features. To make computations
more manageable, LoFTR replaces global full attention with the Linear
Transformer (Tang, Zhang, Zhu, & Tan, 2022). While this approach
has demonstrated its effectiveness, there is a valid concern regarding
the absence of detailed local interaction among pixel tokens at the fine
level. This limitation restricts LoFTR’s ability to accurately extract well-
defined correspondences. This concern gains further weight due to the
observations made by Tang et al. (Rocco, Arandjelovic, & Sivic, 2020),
who found that the cross attention map generated by LoFTR’s Linear
Transformer tends to spread across larger areas rather than precisely
concentrating on the actual corresponding regions.

To overcome this challenge, we present a Transformer-based
detector-free matcher with a hierarchical attention framework to cap-
ture both global context and local details. Our foundation processing
blocks, known as Global-Local Attention (GLA) blocks, perform coarse-
level global attention at low resolution to acquire long-range depen-
dencies, while fine-level local attention at high resolution is performed
within only a concentrated region around a current correspondence
discovered through dense flow prediction.

3.1.2. Knowledge distillation

Knowledge distillation is shown to have a number of advantages
over traditional model training methods (Wang & Yoon, 2021). One
of the most significant advantages is that it allows for the creation
of smaller, more efficient models that can be deployed in resource-
constrained environments. This is particularly important in the field of
deep learning, where the size and complexity of models can be a major
limiting factor in their applicability.

In our approach, we employ knowledge distillation to mimic the
behavior of PixLoc (Sarlin et al., 2021), specifically focusing on ignor-
ing dynamic objects. Knowledge distillation involves training a smaller
model, known as the student model, to mimic the behavior of a larger
and more complex model, known as the teacher model.

One challenge in this task is handling dynamic objects, which are
objects that change appearance or location over time. These objects can
introduce noise or errors in the camera pose estimation process.

To overcome this challenge, we utilize knowledge distillation to
train our student model. We use the teacher model, which is PixLoc
(Sarlin et al., 2021) in our case, as the source of knowledge.

During the training phase, we present the same input data to the
teacher and student models. The teacher model produces its predic-
tions, which serve as targets for the student model. The student model
then tries to mimic the behavior of the teacher model by producing
similar predictions for the given inputs.

I
dese. T4 i :
I* L2 LOSS I

desc. I'® :
|

SAM — Net LOSS :

I

desc. T I
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desc. I |
I

useful
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Fig. 3. Visualization of how PixLoe (Sarlin et al, 2021) ignore dynamic objects.

By training the student model in this manner, we aim to transfer
the knowledge of handling dynamic objects from the teacher model
to the student model. This means that the student model learns to
ignore or appropriately account for dynamic objects in the camera pose
estimation process.

Overall, our approach leverages knowledge distillation to mimic the
behavior of PixLoc, specifically focusing on addressing the challenges
posed by dynamic objects in camera pose estimation. This enables us
to improve the robustness and accuracy of our model in real-world
scenarios where dynamic objects are present. An overview of our
knowledge distillation process can be seen in Fig. 2.

3.1.3. PixLoc

PixLoc (Sarlin et al., 2021), is a neural network designed to estimate
the precise 6-DoF (Degree of Freedom) pose of an image with respect
to a 3D model, regardless of the scene. The approach makes use
of the direct alignment of multiscale deep features, treating camera
localization as a metric learning task. By training PixLoc end-to-end
from pixel-level information to pose estimation, it learns robust data
priors. This enables PixLoc to demonstrate exceptional generalization
capabilities when applied to new scenes, achieved by separating model
parameters and scene geometry. PixLoc effectively ignores dynamic
objects such as cars or fallen leaves, as well as repetitive patterns like
brick walls. Instead, it focuses on salient features such as road markings,
tree silhouettes, and prominent structures on buildings, as can be seen
in Fig. 3.

3.2. Proposed model

Our method, called SAM-Net introduces a detector-free design. In-
stead of relying on a feature detector, SAM-Net directly extracts local
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Fig. 4. Our architecture consists of two models, PixLoc (Sarlin et al, 2021) and SAM-Net, which operate concurrently. The PixLoc module provides us with the descriptors

(dese. I* . dese. I™). The architecture is composed of the following components: Local Feature CNN: This component extracts coarse-level feature maps (F, and Fp) and fine-level
feature maps (F, and Fj) from the image pair I* and I". Flattening and Positional Encoding: The coarse feature maps are flattened into 1-D vectors and combined with
positional encoding. These augmented features are then passed through the Local Feature Transformer (SAM-Net) module, which consists of N_ global and local attention layers.
Matching Layer: To establish correspondences between the transformed features, a differentiable matching layer is employed. This layer produces a confidence matrix. We select
matches based on a confidence threshold and the mutual-nearest-neighbor criteria. Final Match Prediction: M is obtained by refining the coarse matches within a local window,

cropped from the fine-level feature map, for each selected coarse prediction.

features from the images. This design eliminates the repeatability issue
associated with feature detectors, where the same interest points may
not be consistently detected across different images. Furthermore, by
distilling information from PixLoc (Sarlin et al., 2021), it emulates its
behavior, namely ignoring dynamic objects. Ignoring dynamic objects
in localization can enhance performance by reducing background noise,
improving feature extraction, minimizing temporal inconsistencies, en-
hancing generalization, and enabling more efficient inference. Fig. 4
provides an overview of the SAM-Net method, illustrating the key steps
and components involved in extracting robust and repeatable local
features without the need for a feature detector.

3.2.1. Student model (Light FPN)

In the SAM-Net framework, the first step involves using a standard
CNN with a Feature Pyramid Network (FPN) to extract features from
a pair of images, denoted as I* and I®. The extracted features are
divided into coarse-level and fine-level features.

The coarse-level features, denoted as F* and F®, are extracted
using the CNN with FPN. These features are represented as tensors
of shape RC*H/8<W /8 where € is the feature dimension, and H and
W are the height and width of the original images divided by 8. This
downsampling is performed to reduce the spatial dimensionality of the
features.

On the other hand, the fine-level features, denoted as F# and F5,
are also extracted using the same CNN with FPN. These features are
represented as tensors of shape RC*H/2XW /2 where C is the feature
dimension, and H and W are the height and width of the original
images divided by 2. The fine-level features capture more detailed
information compared to the coarse-level features.

Once the local features F* and F? are extracted, they undergo the
SAM-Net module, which extracts local features dependent on position
and context. The main purpose of the SAM-Net module is to convert
the features into representations that are more suitable for matching.
The transformed features are labeled as F and F2.

3.2.2. Positional encoding

Positional encoding plays a crucial role in preserving spatial in-
formation for flattened tokens, as demonstrated in transformer net-
works. In order to encode position information, 2D sinusoidal signals
of various frequencies are employed and added to the initial features,
following the same approach used in LoFTR (Sun et al., 2021). When
the position encoding is applied to F4 and F5, the transformed fea-
tures become dependent on their respective positions. This positional
dependency is essential for the SAM-Net module to generate accurate
matches, especially in regions that lack distinctive features. When
the testing resolution differs from the training resolution, we apply
normalization to ensure consistency.

3.2.3. PixLoc teacher model

In our knowledge distillation process from PixLoc (Sarlin et al.,
2021), we employed the L2 Loss as a method to transfer information.
The process involves two main phases: during the initial stage, the
distilled knowledge is derived from both the teacher and student mod-
els, employing the L2 loss as the distillation criterion to instruct the
student model’s training. In the second stage, the already pre-trained
student model will be trained again with the retained weights. The
mathematical representation is presented in the following equation:

Lyistin = Z MSE(K¢ — Ky) "
where:

* M SE represents the mean square error;
+ K, K represents the knowledge of teachers and students, respec-
tively, during the process of knowledge transfer.

PixLoc relies on a UNet feature extractor that is built upon the
VGG19 architecture. It extracts 3 feature maps with different strides
(1, 4, and 16) and dimensions (32, 128, and 128). To distill the
knowledge from PixLoc, we specifically focused on utilizing the last
feature maps. Additionally, we conducted experiments that involved
incorporating all three feature maps. For more in-depth information on
these experiments, please refer to Section 4 of the study.

3.2.4. Global-local attention block

In our approach, we make use of iterative global-local attention
(GLA) blocks with a hierarchical structure. Each GLA block regresses
auxiliary flow maps that describe the correspondence between coor-
dinates and uncertainty. Rather than using these flow maps as our
correspondence output, we use them to guide local cross-attention.
In order to enable fine-grained attention without significant cost, we
adopt a local attention mechanism on medium and fine level feature
maps. This is particularly advantageous as it allows for an adaptive
adjustment of the local attention span based on the uncertainty inherent
in the matching process. Some work (Truong, Danelljan, Van Gool, &
Timofte, 2021) suggests using a probabilistic model to jointly explain
both flow estimations and their confidence as an elegant framework
for uncertainty prediction (Tutsoy & Tanrikulu, 2022). Inspired by
the above works, incorporating information about uncertainty (Zhou
et al.,, 2020), the model gains the ability to dynamically modify the
range of elements it attends to, thereby enhancing its accuracy in
correspondence matching.

In the context of the iterative GLA block, we begin by predicting
flow maps using an MLP based on input features. Simultaneously, the
flow maps at a medium level are acquired through strided average
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Indoor

Outdoor

Fig. 5. The uncertainty map, predicted alongside the flow information. With warmer
colors indicating lower levels of uncertainty.

pooling. At each scale level, we divide the associated query map Q
into cells. Within each cell, we use average flow estimation to create
a rectangular area on the K and V maps. Then, attention is applied to
each cell and the sampled tokens.

Our method effectively captures both global and local information
in the data. Improves the accuracy and robustness of correspondence
estimation by adapting the attention span according to the uncertainty
of the matches.

3.2.5. Uncertainty estimation

In uncertainty estimation, we categorize all pixels into two groups:
matchable pixels and unmatchable pixels. These groups are determined
based on ground-truth camera poses and depths. We then calculate
the average standard deviation (o) for each group. Over the course
of iterations, the average (¢) for matchable pixels decreases as the
network gains more confidence in its flow predictions during later
stages. Conversely, the uncertainty values for unmatchable pixels are
gradually increased by the network to avoid becoming excessively
confident in a particular region.

In Fig. 5, we present a visual representation of the uncertainty
map for flow prediction. In the first phase, overlapping and non-
overlapping regions are differentiated. It is notable that uncertainty
tends to be greater in textureless areas, suggesting that a broader
context is necessary for cross-attention in these regions.

3.2.6. Matching layer

We adopt the approach utilized in LoFTR (Sun et al., 2021) for
generating the final correspondences. This approach consists of two
stages: a coarse matching stage and a sub-pixel refinement stage.

After undergoing N iterations of GLA (Global Local Attention)
blocks, the updated feature maps are flattened, and a correlation matrix
is then constructed. By applying dual-direction softmax along both
the column and row dimensions, a score matrix is obtained Coarse-
level matches are extracted using the mutual nearest neighbor (MNN)
technique and by filtering out scores below a threshold. These coarse
matches are subsequently passed through a correlation-based refine-
ment block, which follows the same procedure as in LoFTR (Sun et al.,
2021), to obtain the final matching results M -

3.2.7. Loss formulation

The final loss is composed of 4 distinct components: the coarse-level
loss, the fine-level loss, the flow estimation loss, and the distillation
loss. These individual loss terms collectively contribute to guiding the
global loss.

L=L +Ls+ Ly + Lyisun (2)

Coarse-level loss: To compute the coarse-level loss (£.), we use
ground truth matches (M,,) obtained through reprojection using depth
and camera poses from datasets. The dual-softmax score matrix () is
supervised by applying a cross-entropy loss for any location (i, j) in an
image.

£o=-—1

o

= D log(SG.)) 3)
|Mgr) (L)EM,,

Fine-level loss: The fine-level loss is supervised by directly comparing
the refined coordinates (M) with the ground truth reprojection coor-
dinates using the L, distance metric. By individually comparing each
coordinate M (i, j) with its corresponding ground truth coordinate,
the loss considers the Euclidean distance between them, ensuring the
model is trained to accurately estimate and refine the coordinates of
the correspondences.

1 1 |
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where: j,, is computed by warping each i from FA(i) to FE(j) with
the ground-truth camera pose and depth. The corresponding heatmap
is denoted with &(i).

Flow-level loss: In our approach, a Multi Layer Perceptron (MLP) is
utilized to predict auxiliary flow maps within each GLA block. To train
this MLP, a loss function is employed, which comprises a weighted sum
of the L2-distance between the estimated flows and the ground truth
flows.

The supervision of flow estimation involves minimizing the log-
likelihood for each estimated distribution. Specifically, this entails
comparing the flow estimation (#) obtained from each layer of the
model with the corresponding ground truth flow (D#'). This process
ensures that the model is trained to accurately estimate the flow maps
by aligning them with the ground truth flows.

1 o

T ~TDe Elog (N (DU |¢,.J-)) (5)
if

where Dﬁf is the ground truth flow, @, = (u'x"u'}“ ,o-i‘j ,cri.j ) are pre-

dicted parameters at location (i.j), [ug.u,| = Sigmoid(f[: 2]) =*

[H.W].[o,.0,] =exp(f[2 :]) and [ is 4-dimensional feature.

3.2.8. Implementation details

We implemented our model based on the LoFTR (Sun et al., 2021)
framework, using ResNet-18 (Targ et al., 2016) as the initial feature
extractor. ResNet-18 outputs feature maps at two resolutions: 1/8 and
1/2. The 1/8 feature map is fed into a transformer-based network for
updating, while the 1/2 resolution is used for fine-match coordinates
refinement. We adopted a dual-softmax approach for coarse matching,
applying a learnable temperature initialized as 10. The transformer
network was trained using backpropagation and Adam with a learning
rate = 107 and weight decay = 0.1. In the fine matches coordinates
refinement step, we use the 1/2 resolution feature map to improve
the accuracy of coordinate estimation. The model’s parameters were
determined based on experimentation and evaluation of the results.

We trained two models specifically for indoor and outdoor scenes.
The indoor model was trained on the ScanNet (Dai et al., 2017) dataset,
while the outdoor model was trained on the MegaDepth (Li & Snavely,
2018) dataset. Both models underwent 30 epochs of training on 4 x
A100 GPUs (more details about the software and hardware specifica-
tions can be found in the Appendix D). The training process involved
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Outdoor

(a) SuperPoint 4+ SuperGlue

(b) LoFTR

(e) SAM-Net

Fig. 6. Qualitative analysis. The results showed that SAM-Net achieved a higher number of correct matches and a lower number of mismatches compared to the other two methods
(SuperGlue Sarlin et al., 2020 and LoFTR Sun et al., 2021). This indicates that SAM-Net is more effective in accurately establishing correspondences between images. Comparison
between the correct matches/total matches. Outdoor: SuperPoint + SuperGlue (41/42), LoFTR (432/438), SAM-Net (797,/797). Indoor: SuperPoint + SuperGlue (24/26), LoFTR

(723/799), SAM-Net (1819/1838).

optimizing model parameters using techniques such as gradient descent
and backpropagation. This approach allows the models to capture and
understand scene-specific patterns, resulting in improved performance
and robustness in scene-understanding tasks for indoor and outdoor
environments.

4. Experiments

This section of our work highlights the performance of our proposed
method. We evaluate the effectiveness of our method on both indoor
and outdoor scenes to ensure its generalizability and robustness in
diverse environments. To demonstrate the effectiveness of our method
in both indoor and outdoor scenes, we rely on two popular public
datasets: ScanNet (Dai et al., 2017) and MegaDepth (Li & Snavely,
2018).

4.1. Pose estimation

4.1.1. Indoor dataset

The ScanNet dataset (Dai et al.,, 2017) is a benchmark dataset
commonly used for evaluating the performance of visual localization al-
gorithms. It consists of 1613 sequences, with each sequence containing
RGB images that expose large view changes and repetitive or textureless
patterns. Ground-truth depth maps and camera poses are provided for
each sequence, making it a valuable resource for developing and testing
visual localization approaches.

To ensure fair comparison with other state-of-the-art methods, we
follow the same training and testing protocols used by LoFTR (Sun
et al., 2021). Specifically, we sample 230M image pairs for training and
1.5K image pairs for testing. The training and testing sets are carefully
selected to cover a wide range of scenes and camera poses, providing
a comprehensive evaluation of our approach.

In line with LoFTR, we resize all test images to 640 x 480 to ensure
consistency in the input size across different methods. This allows for
a fair comparison of the performance of different approaches on the
same dataset.

4.1.2. Outdoor dataset

MegaDepth (Li & Snavely, 2018) is a challenging dataset that con-
sists of 196 3D reconstructions from 1M internet images. The dataset
provides a diverse range of outdoor scenes with varying lighting,
weather conditions, and textures, making it an ideal benchmark for
evaluating visual localization approaches in outdoor environments.

To evaluate our method’s performance on this dataset, we perform
two-view pose estimation on 1.5K testing pairs. For each pair, we use
our method to estimate the relative camera pose between the two
images. The ground-truth camera poses and depth maps are initially
computed using COLMAP (Schonberger & Frahm, 2016), and then
refined to provide accurate ground-truth data for evaluation. We resize
all test images to have a longest dimension of 1152 pixels in order to
provide a fair comparison with other state-of-the-art methods.

4.1.3. Evaluation metrics

To train and evaluate our method, we follow the standard protocols
used in previous work (Sarlin et al.,, 2020). We train and evaluate
our method separately on the two datasets, ScanNet and MegaDepth.
For two-view pose estimation, we recover the essential matrix from
correspondences produced by our method. The essential matrix encodes
the relative position and orientation between two views and can be
used to estimate the camera pose. We then use the estimated camera
pose to measure pose accuracy by computing the Area Under the
Curve (AUC) at multiple error thresholds (5°, 10° and 20°). To be
considered accurate, a pose’s angular rotation error and translation
error must be less than a certain threshold when compared to ground-
truth poses. The angular rotation error measures the difference between
the estimated and ground-truth rotation angles, whereas the translation
error measures the difference between the estimated and ground-truth
translation vectors.

4.1.4. Results

Tables 2 and 3 highlight the performance of our method for both
indoor and outdoor scenes. When compared to other methods, it con-
sistently achieves the highest accuracy. Furthermore, Fig. 6 provides
a visual representation of our method’s superior performance when
compared to other matches. This combination of quantitative and
qualitative results demonstrates the efficacy of our approach.

4.2. Visual localization

In addition to evaluating our network’s performance on the two-
view pose estimation task, we extend its capabilities by integrating
it into a visual localization pipeline. To validate its effectiveness in
handling multi-view matching in different environments, we employ
two widely used datasets: InLoc (Taira et al., 2018) for indoor scenes
and Aachen Day-Night v1.1 (Zhang, Sattler, & Scaramuzza, 2021)
for outdoor scenes. Through these experiments, we demonstrate the
robustness and accuracy of the method in achieving reliable visual
localization results across diverse indoor and outdoor settings.
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Table 2

The performance of two-view pose estimation on outdoor scenes in the MegaDepth
dataset (Li & Snavely, 2018) was evaluated. The results indicate the accuracy and
effectiveness of the pose estimation algorithm in determining the relative camera
positions in outdoor environments.

Local features  Matcher Pose estimation AUC

@5° @10° @207

Detector-based methods

SuperGlue (Sarlin et al., 2020) 42.18 61.16 7596
SuperPoint DenseGAP (Kuang et al., 2022) 41.17 56.87 70.22
ClusterGNN (Shi et al., 2022) 44.19 58.54 70.33
LightGlue (Lindenberger et al, 2023)  49.9 67.0 80.1
Detector-free methods
DRC-Net (Li et al.,, 2020) 27.01 4296 5831
Patch2Pix (Zhou et al, 2021) 41.40 56.32 68.31
LoFTR (Sun et al., 2021) 52.80 69.19 8l1.18
- TopicFM (Giang et al., 2022) 54.10 70.10 8l.60
QuadTree (Tang et al., 2022) 54.60 70.50 82.20
MatchFormer (Wang et al., 2022) 5291 69.74 82.00
ASpanFormer (Chen et al.,, 2022) 55.30 71.50 83.10
Ours 55.31 71.70 83.37
Table 3

The performance of two-view pose estimation on indoor scenes in the ScanNet dataset
(Dai et al., 2017) was evaluated. The results indicate the accuracy and effectiveness of
the pose estimation algorithm in determining the relative camera positions in outdoor
environments.

Local features  Matcher Pose estimation AUC
@5" @ J0° @20

Detector-based methods

D2-Net NN 5.25 14.53 27.96

ContextDesc Ratio test (Lowe, 2004a) 6.64 15.01 25.75
NN 9.43 21.53 36.40
NN + OANet (Zhang et al., 2019) 11.76 26.90 43.85

SuperPoint SuperGlue (Sarlin et al., 2020) 16.16 33.81 51.84
SGMNet (Chen et al., 2021) 15.40 32.06 48.32
DenseGAP (Kuang et al., 2022) 17.01 36.07 55.66
HTMatch (Cai et al., 2023) 15.11 31.42 48.23
Detector-free methods
LoFTR (Sun et al.,, 2021) 22.06 40.80 57.62
QuadTree (Tang et al., 2022) 24.90 44.70 61.80

- MatchFormer (Wang et al.,, 2022) 24.31 43.90 61.41
ASpanFormer (Chen et al.,, 2022) 25.60 46.00 63.30
Ours 26.01 46.44 63.61

4.2.1. Indoor dataset

We evaluate the performance of our network on the InLoc dataset
(Taira et al., 2018), which consists of a comprehensive collection of
9972 RGBD indoor images. These images are precisely aligned to
create a reference scene model, while 329 RGB query images are
included for visual localization, with ground truth camera poses manu-
ally verified. The dataset presents a significant challenge due to the
presence of textureless or repetitive patterns and large perspective
differences, making accurate matching a difficult task. By testing our
network on this dataset, we aim to assess its ability to handle such
challenges and provide robust visual localization results in complex
indoor environments.

4.2.2. Outdoor dataset

The Aachen Day-Night v1.1 dataset (Zhang et al., 2021) demon-
strates a city environment by constructing a reference scene model
from 6697 day-time images. The dataset includes 824 additional day-
time images and 191 night-time images as query images for visual
localization. One of the most difficult challenges in this dataset is
accurately identifying correspondences, especially in night-time images
with significant and sudden changes in illumination. When dealing with
night-time images and the significant variations in lighting conditions
they present, the task of matching features and finding similarities

Table 4
Visual localization evaluation on the InLoc (Taira et al., 2018) benchmark.
Method DUC1 pucz

(025 m, 107) /(0.5 m, 10°) /(1.0 m, 107)

41.4/60.1/73.7
41.4/60.1/73.7

KAPTURE + R2D2
KAPTURE + R2D2

47.3/67.2/73.3
47.3/67.2/73.3

LoFTR 47.5/72.2/84.8 54.2/74.8/85.5
SP + LighGlue 49.0/68.2/79.3 55.0/74.8/79.4
SP + SuperGlue 49.0/68.7/80.8 53.4/77.1/82.4
ASpanFormer 51.5/73.7/86.4 55.0/75.7/82.5
Ours 51.8,/73.9/87.8 56.0/75.8/83.1
Table 5
Visual localization results on Aachen V1.1 (Zhang et al,, 2021) dataset.
Method Day Night

(025 m, 10°) /(0.5 m, 107) /(1.0 m, 10°)

Localization with matching pairs provided in dataset

R2D2 + NN - 71.2/86.9/98.9
ASLFeat + NN - 72.3/86.4/97.9
SP + SuperGlue - 73.3/88.0/98.4
SP + SGMNet - 72.3/85.3/97.9

Localization with matching pairs generated by HLoc

LoFTR 88.7/95.6/99.0 78.5/90.6/99.0
SP + SuperGlue 89.8/96.1,/99.4 77.0/90.6/100
LightGlue 89.2/95.4/98.5 87.8/93.9/100
ASpanFormer 89.4/95.6/99.0 77.5/91.6/99.5
LightGlue 90.2/96.0,/99.4 77.0/91.1/100
Ours 89.7/95.8/99.0 78.6/91.8/100

becomes especially difficult. To overcome this challenge, robust algo-
rithms that can handle the complexities of matching features under
extreme lighting changes in night-time scenes are required.

4.2.3. Evaluation metrics

To compute query poses, we follow the Long-Term Visual Local-
ization Benchmark (Toft et al., 2020) guidelines. To find potential
candidate pairs in both datasets, we use the pre-trained HLoc (Toft
et al., 2020). To recover camera poses, we use the trained model on
the MegaDepth dataset using SuperGlue (Sarlin et al., 2020) and LoFTR
(Sun et al., 2021).

4.2.4. Results

According to the findings presented in Table 4, our methods outper-
form multiple comparative methods on the InLoc dataset (Taira et al.,
2018). The results show that our approach achieves the best overall
results for DUC1 when compared to the other methods. Similarly, on
the Aachen V1.1 dataset, as shown in Table 5, our method outperforms
all other approaches at night, with the exception of SuperGlue. These
findings highlight our method’s effectiveness and competitiveness on
both datasets, and confirm our method’s potential for a variety of
applications in the field.

4.3. Ablation study

In order to assess the effectiveness of different design components
in our method, we carried out ablation experiments. These experiments
specifically involved comparing the timing of SAM-Net method with
LoFTR and evaluating the impact of incorporating all three feature
maps from PixLoc (Sarlin et al., 2021). By conducting these experi-
ments, we aimed to determine the relative performance and efficiency
of our approach compared to LoFTR.

We conducted ablation experiments to evaluate the effectiveness
of various design components in our method. These experiments com-
pared the timing of the SAM-Net method with LoFTR and evaluated the
impact of incorporating all three feature maps from PixLoc (Sarlin et al.,
2021). The goal of these experiments was to determine the relative
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Table 6
Comparison of runtime speed on 640 x 480 images.
Stage Runtime (ms)
LoFTR Ours
Local feature CNN 28.85 28.85
Attention module 23.10 46.99
Matching 37.20 37.12
Total 89.15 112.96
Table 7

The evaluation of two-view pose estimation on outdoor scenes in the MegaDepth dataset
(Li & Snavely, 2018). We compared our method, by using the last feature map from
PixLoc (Sarlin et al., 2021), and the use of all 3 feature maps.

Feature maps Pose estimation AUC

@5° @10 @2r
SAM-Net with 3 feature maps from PixLoc 25.87 46.43 63.57
SAM-Net with last feature map from PixLoc 26.01 46.44 63.61

performance and efficiency of our approach compared to LoFTR (Sun
et al., 2021).

4.3.1. Timing

We evaluate the speed of SAM-Net by measuring its performance
on 100 randomly selected ScanNet image pairs, each with a resolution
of 640 x 480. The timing is conducted using 4 x A100 GPU'’s, and we
present the averaged results. The time required for processing an image
pair of 640 x 480 on SAM-Net is 112.96 ms, whereas on LoFTR (Sun
et al.,, 2021), it is 89.15 ms.

As presented in Table 6, our proposed method has marginally slower
performance compared to LoFTR (Sun et al., 2021). This variance in
speed can be attributed to the more complex attention operation in our
approach. Despite this slight difference in execution speed, our method
offers valuable advantages in various aspects.

4.3.2. Feature maps

We explored the effects of utilizing different feature maps and
variations in the loss function. We evaluated the knowledge transfer
by focusing on the last feature maps extracted from the UNet feature
extractor, which is based on the VGG19 architecture used in PixLoc.

Furthermore, we conducted experiments incorporating all three
feature maps (strides 1, 4, and 16 with dimensions 32, 128, and 128,
respectively). This allowed us to examine the influence of incorporating
information from multiple scales. The results are presented in Table 7.

4.3.3. Limitations

Table 5 illustrates that our method outperforms all alternative
methods except SuperGlue (Sarlin et al., 2020). This achievement is
attributed, in part, to our use of coarse matches only for database
reconstruction. To elaborate further, when dealing with the Aachen
Day-Night (Zhang et al., 2021) dataset, in our approach, we first
triangulate reference models using coarse matches between images.
Afterward, we establish fine-level matches between the query images
and the database images, with the database images considered as left
images. However, this strategy introduces a localization error that has
a negative impact on the accuracy of position estimation.

5. Conclusions

This paper describes a detector-free matching method based on
transformers and knowledge distillation. The proposed SAM-Net mod-
ule transforms local features to be context- and position-dependent
using cross-attention layers in Transformers, which is critical for ob-
taining high-quality matches. Furthermore, to ignore noise introduced
by dynamic objects, we incorporated PixLoc behavior using knowledge
distillation. In localization, ignoring dynamic objects reduces noise and

interference caused by their presence, allowing the model to focus on
relevant static objects for accurate localization. The effectiveness of our
method is validated by state of the art results.

6. Future work

A possible future research direction is to explore the applicability of
knowledge distillation and transformer-based models to a broader array
of computer vision tasks, extending beyond object detection, semantic
segmentation, and image recognition. Furthermore, we place signifi-
cant emphasis on enhancing the resilience of the proposed approach
against adversarial attacks and refining its real-time implementation for
visual localization.
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Appendix A. Abbreviations

AUC Area Under the Curve

CNN Convolution Neural Network
DGX Deep learning GPU Accelerator
FPN Feature Pyramid Network
GLA Global Local Attention

GPU Graphics Processing Unit

MLP Multi Layer Perceptron

GNN Graph Neural Network
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Appendix B. Variables

Symbol Description

¢ Image feature dimension
FA FB Coarse-level features
FA FB Fine-level features

FA FB Transformed features

H, W Image height, width

ij Location in an image

I, 18 Input image pairs

K. Ky Knowledge of teachers and students

L, Coarse level loss

Ly Fine level loss

L Flow Flow level loss

L Set of knowledge pairs between the
teacher and student model

M, Final matching results

M, Ground truth matches

N Gaussian distribution

o, K,V Query, key, values for self-attention

A Dual-softmax score matrix

o Average standard deviation

2] Flow estimation

Appendix C. Adjustable control parameters

Parameter Value
Learnable temperature 10
Learning rate 1073
Nr. of epochs 30
Weight decay 0.1

All the additional model parameters can be located in our Git! reposi-
tory, specifically in the “scr/config” folder.

Appendix D. Software and hardware specifications

D.1. Software specifications

The software specifications, including libraries, tools, and depen-
dencies, are available on our Git® in the “environmentyaml” and “re-
quirements.txt™ files.

D.2. Hardware specifications

The training and testing process was done using the following hard-
ware configurations: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90 GHz,
768 GB System Memory, 4 x Al100 Graphics Processing Unit (GPU).
More details can be found in our Git! in the “specs.txt” file.
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