Biomechanically Enabled Robotic Controller for Restoring Human Ability


An increasing amount of people, especially elderly ones, face mobility problems often due to a stroke or some kind of accident. To increase their quality of life and reduce their dependence on others, physical rehabilitation is necessary. The aim of the rehabilitation is to enable the people to re-learn how to use their limbs and strengthen the affected muscles. The traditional way of performing rehabilitation is by helping the patients pefrorm repetitive motions. A physiotherapist is monitoring their effort and progress and adjusts the task and the motion respectively. However, due to the fact that different patients have different mobility problems, the pre-defined repetitive motions do not constitute an optimal rehabilitation scheme for everyone. In other words, the rehabilitation is not always personalised. Our proposal is about designing a Biomecanically Enabled roboTic controllER for REstoring Human ABility (BETER REHAB). The idea is to use a robotic arm to improve the rehabilitation process of a patient. The robotic arm will be attached on the arm of the patient and will firstly detect the intention of motion of the patient. Based on this intention, it will calculate a trajectory of motion and will apply the appropriate force along that trajectory. This way, the patient will be free to perform any type of motion, not just the predefined ones, and receive the appropriate assistance from the robotic arm. To be able to do this, the robotic controller needs to be aware of the biomechanics of the arm. Therefore a musculoskeletal model of the upper arm will be included in the feedback loop of the controller of the robot. To better estimate and understand the intention of motion of the patient, we will simultaneously measure the muscle activation of the upper arm and the current position of the arm segments. Finally, the idea is to apply enforced learning techniques to allow calibration of the system for each patient individually. For more information, check the project's website

Start date (duration): 
May, 2018 to April, 2020
Project status and type: